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ABSTRACT

A constitutive relationship was used to model the cyclic material response of damping
test samples in separate bending and torsion configurations. This was done in order to better
understand variations in reported values of damping for materials possessing strain dependent
characteristics. The constitutive equations are based on a model of shape memory alloy stress-
strain behavior and have been adapted especially for the study of nonlinear hysteresis and the
problem of strain dependent damping. Experimental measurements and analytical material
response analyses of separate bending and torsion test samples indicated that when the damping
of a single nonlinear material is plotted against the one-dimensional local strain of the sample,
results are produced which are difficult to compare. However, when the same results are plotted
against an invariant measure of three-dimensional distortion the means by which one may
compare the data is more straightforward. Also, the approach allows for a quantitative
comparison of the damping at a material point to the overall damping. The method can be
applied to any homogeneous isotropic nonlinear damping material.

ADMINISTRATIVE INFORMATION

This research described in this paper was performed at David Taylor Research Center,
under the supervision of Dr. O.P. Arora, DTRC Code 2812. It was supported in part by an
Office of Naval Technology (ONT) postdoctoral fellowship under the administration of the
American Society for Engineering Education (ASEE) and by the Quiet Alloys Program which is
part of the Functional Materials Block Program sponsored by Mr. Ivan Caplan (DTRC Code
0115) Program Element 62254N Task Area RS3454, Work Unit 1-2812-949. This report
satisfies milestone 53SR1/4.

INTRODUCTION

In addition to add-on damping techniques currently being used in the Navy, material
damping is being investigated as a potential means of further reducing machine vibration, noise,
and sound emission in seafaring vessels. Ideally a high damping structural material provides a
sufficient amount of both stiffness and damping so as to be used as a sole machine part or
vibrating element without added treatments. Such materials are most useful for oscillating parts
or elements that cannot be damped by conventional external treatments. Also these materials
can be useful in situations where heat or other environmental factors (e.g. mc:sture, corrosion)
have to be considered. This approach is also useful in damping longitudinal vibrations which

cannot be effectively controlled by external treatments.
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Because high stiffness and strength are required in many important applications, metals

which possess a large inherent damping capacity have been extensively sought {1,2]. Some
specific applications inctude gears and gear webs, pump casings, engine paris, propellers, and
others (see [1]). High damping metals are also used as plug inserts and cladding, and such
applications can provide a reduction of rescnant amplification factors as well as the attenuation
of ringing [1].

Generally "high damping” in metal is a measured peak loss factor or phase lag with a
value of 102 or higher. Indeed many ailoy compositions have been studied and found fo possess
such levels of damping (e.g. see [3-8]). Mechanisms which give rise t0 damping in nietals
include: movement of point defects, dis'ocutions or domain walls. These effects give rise to
macroscopic hysteresis and thus damping. The damping capacity of high damping metals is
strzin dependent because the primary damping mechanisms function over a finite strain range.
Such effects give risc to a weil defined peak in the plor of measured damping vs. specimen strain
amplitude. Examples of magnetostrictive metallic materials exhibiting strain-dependent
famping are given in Fig. 1. This type of respense is termed "nonlincar” because the measured
damping capacity varies with specimen strain amplitude.

A generalized stress-strain diagram corresponding to a relative'y large cztegory of
nonlinear dampicg mechanisms is illustrated in Fig. 2. Note from this figure that the damping
mechanism is activated near a critical siress o, and becomes saturated at a strain of €,. This type
of hysteretic respozse can be associated with a number of nonlinzar anelastic damping
mechanisms. For example, in dislocation breakaway a minimum str=ss is required tc force
dislocations over nearby pinning points during loading. Upon unloading the elastic stran energy
stored in the lattice of the material may be sufficient to move the dislocations back to their
original positions. The net effect of this process is an elastic response with internal {riction.

Gther nonlinear anelastic damping mechanisms include the movement of mobile domain

boundaries. Ferromagnetic domain walls, twir. boundaries, antiferromagnetic domain walls, and

phase domain walls fall into this category. Usually, a finite amount of stress (o) is required to
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initiate this type of mechanism, i.e. a specific amount of stress is required to overcome an energy
barrier so that the boundaries may move. Release of the applied stress subsequently causes the
mechanism to act in reverse because the elastic strain energy stored in the material is sufficient
to move the boundaries back across the energy barrier. Again the net effect is an elastic
response with energy dissipation due to internal friction. Also, these mechanisms may become
saturated at a limiting value of strain. For example, the magnetic domains in high damping
ferromagnetic alloys are arranged in a randomly criented pattern when the material is unstressed.
However, upon application of a uniaxial stress the domains change their orientation and tend to
align themselves in the direction of loading as the stress is increased. Once these domains
become fully aligned any further stress cannot cause relative motion of the domains and the
mechanism is said to be saturated. The amount of enezgy that can be dissipated by this type of
damping mechanism is therefore limited to a fixed value for cyclic strain amplitudes greater than
the limiting value of strain corresponding to saturation (g,).

The data obtained for a single strain dependent material in varied test configurations is
often difficult to compare because of the inherent strain distributions that arise from the loading.
Data from separate bending and torsion tests [3] given in Fig. 3 shows this effect; indeed the
results indicate that the torsional tests produce significantly higher values of damping for
common levels of peak sample strain. Also, the damping rises more steeply with peak sample
strain in the torsion test. However it is important to note that the strains on the abscissa are shear
strains in the case of torsional data and axial strains in the case of bending data and these
separate strains are not equivalent; indeed axial strains give a measure of length change while
shear strains refer to the distortion of right angles This is an important aspect of the problem
which will be discussed in the analysis section of this paper.

Strain dependent materials are, at best, difficult to model analytically because of their
nonlinear characteristics. Early work in this area concentrated on evaluating the damping of
members by combining material energy absorbing properties with geometric and stress

distribution factors [9,10]). Another approach is to use a constitutive law which describes
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nonlinear material behavior and hysteresis at a point, and this approach will be used here. Many
such laws exist (e.g. see [11,12]), but these are usually specific to postyielding viscoplastic
behavior and large strain levels. In this paper a proposed constitutive law [13,14] for the stress-
strain behavior of shape memory alloys is adapted to the case of nonlinear damping. The
equations of this law were applied to the cases of simple uniaxial tension-compression and shear
loading of materials. Solid geometries of beam and shaft test samples in bending and torsion
were also considered. The strain dependent nature of each test configuration was computed, and
because this behavior was of primary interest, temperature and frequency effects were not
considered.
ANALYSIS

A three-dimensional constitutive 1aw of hysteretic material behavior was employed so
that a useful study of strain dependent damping could be made. This law is based on the three
dimensional generalization [14] cf a one-dimensional model of shape memory alloy (SMA)
stress-strain behavior [13}, where the extension from one to three dimensions follows a method
originally developed by Prager [15] (for a detailed development regarding this extension method
see [16,17,14]). This choice of modeling schemes was pursued because the hysteretic response
of superelastic SMA's is very similar in character to that of high damping metals (see Fig. 2),
except that the stress and strain levels are different by many orders of magnitude. This does not
prevent the use of the constitutive law, however, as long as the material properties of the law can
be scaled to accommodate the lower stress and strain levels associated with the dissipative
mechanisms of the damping material.

The constitutive law is for homogeneous and isotropic material behavior and is based

upon a separation of strain and strain rate into elastic and inelastic components:

(1a)

_¢c in

cl

. . .in
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Here an overhead dot represents differentiation with respect to time. Thus €;; and éij are the

three-dimensional tensors of strain and strain rate, and the superscripts "el" and "in" designate
the respective elastic and inelastic components of each. The elastic component follows directly

from the theory of isotropic elasticity [17]:

el l+v v
% =" % E by @
where Oy is the stress tensor, bij is the Kronecker delta!, and where E and v are the elastic

material constants.
The basic equations for the evolution of inelastic strain were taken from the previously

cited model of shape memory alloy behavior. In this model the growth of inelastic strain is a

function of a backstress tensor Bij, which is a variable that accounts for internal stress fields in

the material, as described by the following set of equations:

in o+ + o-1 "'bi'
t = Y () [ ®

bi: = 2 Eat |60 4 £, —— rf[2 +31] i 4
ij=3 ex]+ T%{/-3T2e 33 2 {u[ 2]} @

Here e;;, s;;, and by are the deviatoric tensors of strain, stress and backstress respectively; the

difference sy; - by; is often referred to as the effective stress. The quantities I, J, and K; are the

second order invariants of the deviatoric tensors of strain, dimensionless effective stress, and

strain rate, respectively; these quantities are defined below:

1 1 1. .
%630 . h=3%%y . Ke=3&

1
Sij = 03 =3 %k

15y=1 if i=j, 5;=0 if i#j, i,j=1,2,3
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Thus the growth of inelastic strain is a function of stress, backstress, and strain rate. Also, note
here that plus sign appearing with the radical sign of the square root of the invariants in Egs. (3)-

(4) indicates that the square root, once taken, is to be positive (i.c. the absolute value of the

square root). The tensor e;; is known as the distortional component of strain because, by
definition, it subtracts the dilatational component of deformation out of the strain tensor Ejj -

Therefore, I, represents a measure of volumetric distortion that is invariant with respect to

coordinate transformations, and this will be an important quantity in the forthcoming discussion.

The material constants in Eqgs. (2)-(4) are:

E: Young's extensional elastic modulus
v: Poisson ratio of elastic material
O¢: minimum axial stress necessary to activate the demping mechanism

a: constant which determines the slope of the inelastic region

= Ey/(E - Ey), where Ey is the inelastic slope

n: constant controlling the sharpness of transition from elastic to
inelastic behavior
fr: constant controlling the size of the hysteresis loop

a: constant controlling the amount of elastic recovery during unloading

Also, Egs. (3) and (4) contain two special functions: the error function, erf( ), and the
unit step function, {u()}. Simply stated the purpose of the error and unit step functions
contained in Eq. (4) is to allow for the recovery of accumulated inelastic strain during unloading,
and thus simulate the unique behavior of superelastic materials [13,14].

Let us take 2 moment to expiaia the role of the inelastic response in the modeling of
strain dependent damping. The inelastic component of strain is responsible for the dissipation of
energy that takes place in cyclic loading. Equations (1)-(4) have been used to represent the
macroscopic stress-sirain behavior of shape memory alloys, and especially superelastic materials
[13,14]. The hysteretic character of superelasticity is macroscopically similar to that of

nonlinear anelasticity except that the respective stress and strain levels of each type of response

——
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are different by many orders of magnitude. Therefore, the inelastic response governed by Eqs.
(3)<(4) can be used to rep.esent the macroscopic effect of 4 ncnlinear anelastic damping
mechanism.

By using Egs. (1)<(4), 2 number of special cases can be considered. First iet us consider
the cases of uniaxial tension-compression and pure shear loading. The state of uniaxial loading

(superscript u) is described by:

e 0 O €0 0 a0o0 OO
u U N 0 u__

Here €, 0, and P are the axial strain, stress, and backstress in the x direction of Cartesian space,
respectively. Also the lateral strain and strain rate induced by the Poisson effect (-p€ and -p2)
are associated with the coefficients p and p respectively. Strictly speaking, p and p are neither
constant nor equal due to the uonlinear effect induced by the damping mechanism. In order to
evaluate these coefficients the lateral strain and strain rate are decomposed into elastic and
inelastic parts and we will assume that volume changes induced by axial loading are associated
only with elastic deformation. Thus the inelastic part of the strain and strain rate are associated
with incompressible behavior as is done in the theories of plasticity and viscoplasticity [17].

This assumption is plausible since the damping mechanisms involve movement of dislocations,
point defects, domain walls, or polymer chains none of which induce a change in volume. Using
this assumption, the elastic component of the lateral strain is related to the elastic 2xizl strain by
the elastic Poisson ratio v, and the inelastic component is r=iated to the axial inelastic strain by
the Poisson coefficient of incompressible deformation (which is 0.5); therefore -ug =-ve€l - .5¢in.
Similarly, the lateral strain rate is -pé =-vi¢l - .5¢i0, Using these relations it can be shown

(Appendix A) that p and p are:

L1l ho
"’2'5[2“’]5
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Thus p and p are clearly variable coefsicients which are not necessarily equal to each other.

For thie conditions of pure shear loadirg (superscript s) we have:

0%0 I-O'%G 00 CEO
s .5 . s s
2 000 000
000 0060

Here y and  are the engineering shear strain and strain rate, T is the shear stress, and E is the
shear backstress ir: the xy plane of Cartesian space.
By using the appropriate siress, backstress, and strain tensors, as well as their respective

deviators and associated invariants, Eqs. (1)-(4) produce the following uniaxial equations:

21
6=E[é--L;m|é|

o-B|*! (o-B) ]
ilirsy

ccj

B =Ea [e - % + frerf [ﬂ%‘l‘%; {u(-eé)}}

.

I the behavior is only a small departure from elasticity then p = p = v; conversely if a condition
of strain and strain rate exists where inelastic behavior dcminates and where o/e « E and da/de «
E then the response is escentially incompressible with u = p =.5. Now, since 1« and p appear

only in terms assoc:ated with inelastic strain, the previous equations can be simplified by setting

both Poisson coefficients equal to .5. This does not greatly affect the numerical results sir.ce

these terias will be significant only in the inelastic region (i.e. when o /E < €). Thus we obtain:

-io1 (g -
o=t 52" ]| ®
B =Ea {e - % + fr erf(ag) {u(-sé)}] ©)
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For the case of pure shear loading the governing differential equations are:

JElDl fp.E)
e-ali-n [ 5] ©
Tc Tc |
Eaf T ] .
6= [y & frentf{f] e ®
where
E . .
G= 21+v) is the elastic shear modulus
O . .
To= 7-3- is the shear stress whereupon the damping

mechanism is activated

Note that 1, falls out of the formulation automatically in a manner that is consistent with the
theory of maximum distortional strain energy {18]. This is because Eq. (3) is dependent on the
stress gradient of a potential function [14,16] that contains a Bingham type condition for the
onset of the inelastic damping mechanism.

As noted before, the damping mech.\nisms become saturated at an axial strain of &,. This
differs from SMA hysteretic behavior and therefore the model must be modified. The
modification consists of specifying that the growth of inelastic strain be stopped at a saturation
limit beyond which linear elastic behavior once again takes place. To do this the second term in
Eq. (5) is multiplied by the unit step function {u(g, - Je[)}. At levels where € < g, {u(E,-Je])}=1
and inelastic growth of strain may prcceed, but when € = €,, {u(€,-Je[)}=0 and continued loading
beyond &, is elastic. Similarly, for saturation of damping mechanisms in shear the second term
on the right hand side of Eq. (7) is muitiplied by {u(¥, - ly])}, where y, is the shear strain of
saturation.

Since we are modeling marerials which are both homogeneous and isotropic, the

saturation process in more general three-dimensional loadings can be represented by a value of
the invariant I, which is determined from either €, or y,; we will call this value I,,. Thus
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saturation is determined by a specific amount of distortion, and the unit step functions {u(gy-le])}
and {u(Y,-ly])} can be obtained from {u(y ,3120 - \/312}.

To summarize, the equations that are set forth to represent the respective three

dimensional, axial, and shear responses of nonlinear anelastic materials are as follows:

3D: K, \j'J—z] { [ 3y, - \Bl, ]} ©)

b..=§m[e +fT2 erf[z %35 ol ] (10)

Axial: o= Ele -1¢ S p i [ ]{u(s., lel)}] (11)
() .

B =Ea [e - + frerf(ae) {u(-ee)}] (12)
-gfn-1 -E)

Shear i=G[?-|?| E;c_’é [Et_ci {“(Yo‘hl)}] (13)
Eq :

8= v G+ VBtrert| ] i (14)

where

1+v T . :
Yo = gT'j_)e" is strain limiting inelastic growth in shear

The hysteresis loops associated with axial and shear behavior are produced by numerical
integration of Egs. (11)-(12) and (13)-(14), and by specifying a sinusoidal history of strain input
with amplitudes of €p in the axial case and Yp in the shear case (Appendices B and C). These
amplitudes were specified to be greater than the saturation strains so that the full character of the
predicted response could be plotted. The results of calculations for the axial and shear loading

conditions are given in Figs. 4 and 5 respectively. Both figures possess the same characteristics:

10 DTRC-SME-91/34




elastic behavior dominates in the region of the origin as well as outside the limiting strain, and a

hysteresis loop is manifested in the full cycle of strain application. The area enclosed by the
hysteresis loop represents the energy absorbed by the material per cycle of oscillation,’and this
quantity is denoted as AW. An elastic modulus of E = 28.5x106 psi and saturation strain of €, =
0.0001 were selected based on the elastic modulus and approximate strain of peak damping in
Fe-Cr alloys (see Fig. 1). The remaining material constants used in the calculations which
generzted Figs. 4 and 5 were not selected to reproduce the behavior of any specified damping
material; rather they were selected to approximate a typical pattern of hysteresis in nonlinear
damping materials and to permit investigative analyses. It should be noted that the numerical
results generated by the constitutive equations were obtained by Runge-Kutta fourth order
integration, and these results for the material response were strain rate independent. Also the
elastic and inelastic material properties (i.e. E, Ey, and o) are accurately reproduced in
numerical calculations [14].

By having numerical results of the type just presented, we can now compute the damping
according to the definition of the loss factor, 7, defined as

AW
A (15)

where AW is defined as given above, and W is a measure of stored energy most often selected as

1
W= S Ena O (16)

By using Egs. (11)-(12) and (13)-(14) in calculations for the cyclic material response over a
range of peak axial and shear strains, and computing the loss factor associated with each peak
strain according to Egs. (15) and (16), the general character of the damping vs. strain diagram of

nonlinear materials was produced (computer algorithms are given in Appendices D and E); this
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is shown in Fig. 6. Note that both curves possess the characteristic damping peak associated

with nonlinear damping materials.

However the separate curves in Fig. 6 representing axial and shear loading differ
significantly with respect to one another, and this can make the results difficult to interpret. In
an effort to understand these results, the amount of energy absorbed in each loading
configuration was evaluated. The amount of energy absorbed is plotted as a function of peak
strain in Fig. 7. Above the respective axial and shear saturation strains the amount of energy
absorbed by the material is essentially the same for both loading configurations, their difference
being less than 1%. Therefore the difference in the character of the two separate responses must
be due to other factors.

It turns out that the plots given in both Figs. 6 and 7 are misleading because the abscissa
of these figures represents values of strain associated with separate axial and shear loading
conditions, and the strains associated with these separate conditions are not equivalent. Since
damping is a material property, it is desirable to plot strain dependent material damping values
using a measure that will unify the curves from separate tests. Such a method would also
provide a basis by which to present and compare damping data for a variety of materials.
Therefore another measure of deformation equivalent to both types of loading needs to be
employed. One such possibii’ty is to use a measure of distortion rather than strain. Let us define

an equivalent strain € as follows:

£ =1f3L, an

This measure is similar to the effective plastic strain in plastically deforming materials [17]. It is
clear that € has a physical meaning that is independent of the choice of coordinate axes since it is

based on the invariant I, which is the second invariant of the deviatoric strain e;;. Therefore € is

an invariant measure of distortion.
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By considering the separate conditions of axial and shear loading, and by taking the

variable Poisson coefficient to be the elastic constant v for axial case, the equivalent strains for

each condition are:
'=(1+v)e (uniaxial loading)
?= 3257 (shear loading)

Using the peak equivalent strains of axial and shear loading in place of the peak strains used in
Figs. 6 and 7 produces a more consistent pattern of results. This is shown in Fig. 8 where the
energy absorbed as a function of £ is in very good agreement along the entire abscissa for both
cases. In Fig. 9 the loss factors of the axial and shear loading cases are also plotted against the
peak equivalent strain. Even though the peaks of the separate curves are not of equal magnitude
the results in this figure are now very similar; indeed the rise and fall of each curve follow the
same irend and the peak of each damping curve occurs at approximately the same level of
distortion.

The peak of the loss factor curve for shear loading is slightly higher than the peak of the
axial loss factor curve due to a smaller value of stored energy in the shear loading case. This is
another complication that arises from the nonlinear nature of the of the stress-strain material
response and (for equal amounts of distortion) causes the value of peak shear stress to be lower
than the peak axial stress. Consequently, at equal Jevels of distortion, the measure of stored
energy (Eq. (17)) will be larger in axial loading than in shear and this will cause the loss
modulus in shear to be greater than the loss modulus in axial loading.

Bending and torsion are common configuraticns in which to measure damping. The
solid beam has length L and rectangular cross-section of width b and thickness h. Although the
stress-strain response is nonlinear we can consider both cases ia 2 simple fashion because the
response takes place in a manner which gives symmetric behavior for positive and negative

strains. When considering bending and torsion problems with pronounced plastic deformation
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and nonsymmetrical stress-strain responses, then special considerations must be made when

computing the acting moments [17].
Schematic illustrations of bending and torsion are shown in Fig. 10. The torsional solid
shaft has length L and circular cross-section of radius R. Note that the strain profiles in each

geometry are linear, passing through zero at the position of the neutral axis of the beam and

starting at zero at the center of the shaft. Also note thate, is the value of the axial strain at the
beam surface while yp is the value of the enginecring shear strain at the shaft surface. The
angles 0 and ¢ are the curvature of the bending beam and the angle of twist of the shaft
respectively. Because the problems under consideration involve only small strain, the following
simple relations can be used to compute the moments and angular displacements for the beam

and shaft geometries respectively:

2

M=-fyodA and 6=—l;£ (beam)
A

T=[rtdA and ¢=% (shaft)
A

Here y is the vertical distance from the neutral axis of the beam cross-section, 0 is the axial
stress in the longitudinal fibers of the beam, and M is the resultant moment bending the beam;
for the shaft r is the distance from the center of the circular cross-section, < is the shear stress
due to torsion, and T is the resultant torque twisting the shaft. The equations given above
relating 0 and ¢ to sample dimensions and surface strain amplitude are easily deducible from
simple geometrical arguments which involve the knowledge of a linear strain profile and the
restriction of small strains.

In the numerical analyses associated with these bending and torsion tests, the surface
strains of each test sample were specified to act sinusoidally in time. Each geometry was

subdivided into a large number of finite, but thin, subsections (i.e. the infinitesimal distances dy
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and dr in Fig. 10 were replaced by small but finite distance Ay and Ar respectively). Also, the

strain distribution for each finite subsection was assumed to be constant over the subsection
thickness and the value of the strain was taken as the value of the strain profile at the center of
the subsection. Knowing the strain profile of the cross-section of each geometry and the history
of the respective surface strains, the stress history for each subsection of the geometry was
computed numerically. Specifically, Egs. (11)-(12) were integrated to give the stress profile
time history of the bending beam and (13)-(14) were integrated for the shear stress profile time
history of the shaft (see Appendices F and G). Then the following formuias were used to

compute the resultant moment and torque histories of the beam and shaft:

N
M=-b 3 y;0; Ay

i=1

N
T=2r Y (27 Ar

i=1

where N is the number of subdivisions making up the cross-sectional geometry and where the
subscript i indicates reference to the location of a single subsection.
The loss factor of each sample geometry was then calculated for a specified value of

surface strain amplitude according to Eq. (15) where AW was determined by the area enclosed

by the resultant moment vs. angular displacement hysteretic response and W was determined by

(beam)

1
W= 2 $max TI (shaft)

’mu

The damping values which were computed in this way were found to be independent of sample

geometry, i.e. for a given surface amplitude the ratio of AW to W remained constant for changes
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in cross-sectional size, sample length or both. This effect is due to the fact that a proportional,

volume of material is undergoing deformation wherein the damping mechanism is activated and
this proportion of volume is constant irrespective of sample size for both simple bending and
torsion.

In Fig. 11 the loss factor was plotted against the surface amplitude for both the bending
and torsion cases by repeating the calculations over a range of surface amplitudes. Note that the
character of the damping vs. surface amplitude curves are different with respect to one another.
This is analogous the trend shown earlier in Fig. 6 for one dimensiona! behavior. Also, by
comparing Fig. 11 to Fig. 6 it is clear that the character of the damping vs. peak strain curve of
each sample is quite different than that corresponding to the respective one-dimensional material
point responses. This is due to the strain dependent nature of the damping and the fact that strain
is nonuniformly distributed throughout the sample; therefore some regions of the geometry may
be contributing significantly to the overall damping of the solid sample while others are not.

Using Eq. (11) to calculate the amounts of peak equivalent strain at the surface of the
bending and torsion samples, Fig. 12 shows that the use of peak equivalent strain gives an
improved measure of correlation in the same manner that was exhibited earlier for the one-
dimensional cases.

Thus presentation of nonlinear damping data as a function of equivalent strain rather than
as a function of sample strain can be very useful. It is probably most useful in comparing
damping data obtained by different test methods. It may also be useful in design work where the
dynamic strains in a vibrating part or member are known. Along this line, let us briefly consider
an example where a designer wishes to use a high damping, but nonlinear, material in an
application where bending is the primary mode of deformation, and suppose that damping data is
available only from torsional tests. If the vibrational strain levels to be expected in service can
be deduced from load and design analyses, then these strain levels can be converted to the
measure of equivalent strain introduced in this paper. The designer would then be able to

estimate whether or not the material damping will be in a range of peak performance for the
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application of interest by applying the same conversion to the peak shear strains of the torsional
damping data.
SUMMARY

The work presented in this paper includes three major aspects; 1) modeling of nonlinear
(or strain dependent) damping behavior via constitutive equations, 2) relating the damping of the
material to the damping of a test specimen, and 3) a way of improving correlation of nonlinear
damping data via use of equivalent measures of distortion. These efforts were conducted in
order to gain a better understanding of macroscopic nonlinear high damping material behavior
and also to obtain a means in which to better correlate damping data from tests which use
different sample geometries. The modeling scheme applies to homogeneous isotropic materials
and is adapted from a constitutive model of the viscoplastic type through incorporation of
constants that represent the onset of damping mechanisms. Also the model was modified to
include damping mechanisms that become saturated after a given amount of strain. Analyses
were made to calculate the loss factor of the common damping test configurations of bending
and torsion. To do this material point relationships were used at a large number of points
making up the cross-sectional geometry. In this way it was possible to relate the damping of the
material to the damping of the specimen. The results did not depend on the relative dimensions
of the sample geometry; rather the calculated loss factors depended only on the mode of
deformation. The results showed that the strain dependent damping associated with each test
were difficult to compare when plotted solely against the peak surface strain of the sample
geometry. This is because the peak strains that correspond to each of these test configurations,
namely axial and shear strain, are different from one another. However if an invariant measure
of peak sample distortion is used in place of peak sample strain, then the correlation of the
nonlinear damping of separate bending and torsion samples improves considerably. Such an
improved capacity for the correlation of nonlinear damping data is very useful for comparison of

data obtained from different tests. Future research will include the modeling of specific

DTRC-SME-91/34 17




nonlinear damping data. Also, constitutive model material parameters that are physically

motivated by the microstructure will be studied.
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LOSS FACTOR VS STRAIN AMPLITUDE IN 7 FE-CR BASED ALLOYS
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Fig. 1. Strain Amplitude Dependent Damping in Fe-Cr Based High Damping Alloys.
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Fig. 2. Generalized Macroscopic Hysteresis of Nonlinear Damping Materials.
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Fig 3. Strain Dependent Damping of Cu-Mn in Separate Bending and Torsion Tests [3].
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Fig. 4. Hysteretic Behavior Calculated for Pure Axial Loading.
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Hysteretic Model cf Shear Loading with Elasticity Past 7.
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Fig. 5. Hysteretic Behavior Calculated for Pure Shear Loading.
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Fig. 6. Strain Amplitude Dependent Damping for Pure Axial and Shear Loading.
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Energy Absorbed by Axial and Shear Hysteretic Models
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Loss Factor vs. Peak Equivalent Strain: ¢ = \/ K
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Fig. 18. Schematic Drawing of Strain Profile in Bending and Torsion Geometries.
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Strain Dependent Damping in Beam and Shaft Samples
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Fig. 11. Amplitude Dependent Damping in Bending and Torsion vs. Peak Surface Strain.
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APPENDIX A
In this appendix, we will examine the Poisson effect associated with isotropic material
deformation with nonlinear inelastic effects. To do this first consider the strain tensor &;
associated with pure axial stressing, i.e. without off-diagonal (shear) strains. The total strain is

made up of separate elastic and inelastic parts as follows:

where the elastic part (superscript el) is related to the strecs by elasticity theory and where the
inelastic part is associated with incompressible deformation mechanisms (i.e. mechanisms which
operate without any associated volume changes; e.g. dislocation glide). Therefore, for the case

of uniaxial (superscript u) stressing

el 0 0 g 10 0
eij = 8;; =10 -VECI 0 + 0 'Eein 0
0 0 -veel 0 0 .%gin

Note that the total axial strain is specified to be aligned along the x coordinate of Cartesian space

with €¢1 = o/E. This in turn leads to

gl 4 gin 0 0
1.
u -ygel . =gin
81] = 811 = 0 VE 53 0
0 0 -veel- %ein

Thus it is clear that the Poisson induced strains are composed of an elastic part which is

related {0 the esastic strain by Poisson's ratio and an inelastic part which is related to the inelastic
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strain by the coefficient 1/2. By this process it is clear that the inelastic part of strain satisfies

the condition of incompressibility.
Now, by using €¢ = o/E and € = €°1 + £i? let us evaluate the Poisson induced strains in

more detail. First note that

. g
w3 = vg-3(e-g) - |

1 1¢1 o
r=2£[)3 @
it follows that
1.
“HE = -vs‘l-iem (A2)
e 0 O
g = |0 -ue 0 (A3)
0 0 -ue

Now, from Eq (A3) we can compute the strain rate tensor s:;
> 0 0

.U . .

eij = 0 Ut - Re 0
0 0 -pé-pe

From this let us proceed to evaluate the Poisson induced strain rates in more detail. Considering

Eq. (Al) it follows that
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and this leads to

1-v]6= -%é+[%-v]é°l

(A9)

=-visl.(gog) = vl Jgim

Thus the Poisson induced strain rate decomposes into two parts: one part is an elastic component

and is related to the axial strain rate by the Poisson ratio, and an inelastic part that is associated

with the inelastic strain rate in a manner consistent with incompressibility.

By using ¢ = G/E and & = §¢1 + i Eq. (A4) becomes

€

N

-vé"l-%éiﬂ = %[%-v] G-

or

[ ST
[}
trif—

|

Thus the variable Poisson coefficient associated with strain rate (which is denoted here as p) is

“UE - e

as follows:

111 Hdo
p-2'1=,[2“’ de
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for axial stressing.
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APPENDIX B

FORTRAN MAIN PROGRAM (all subroutines and function subprograms that are not
specifically related to the calculations being made here are given in Appendix H):

C-u----> Program Name: UNIAXIAL.FOR

C-'-=-> This program will carry out a Runge-Kutta integration on the

stress~strain equations of the SMA hysteretic model for axial
loading. Note that inelastic behavior is suppressed beyond EPSLNO.
The strain history is prescribed (i.e. input) as sinusoidal.
Stress is the output variable. Strain and stress paira (i.e. the
hysteresis curve) are written to data files for plotting

with GRAPHER {which reads ASCII data arranged in column pairs).

NOMENCLATURE :

REAL CONSTANTS:
A Material constant controlling shape of hystoresis
ALFA =By/(E-By) where By is the inelastic modulus
AMP Amplitude of strain input
E Young's modulus
EPSLNO Strain beyond vhich inelastic growth is supressad
FREQ FPrequency of cyclic strain input
FT Material constant controlling size of hysteresis
N Overstress power (controls sharpnesz of transition to inel.)
VNEW Poisson's ratio
VNEWIR Inelatic Poisson coefficient
Y Stress where damping mechanisms are activated

INTEGER CONSTANTS:
RC.CLE No. of cycles of oscillation
4PPCYC No. of points per cycle to be used in integration

CHARACTER STR1NGS:
PILENAME string for filename assigrment to a PORTRAN unit number

SALFP string for material constant ALFA
SA string for material constent A
SE string for Young's modulus
SEO string for limiting strain RPSLNOC
SEP string for peak strain AMP
SPT string for material constant PT
SN string for overstress power N
sy string for stress where damping mechanisms activate: ¥
TITLE descriptive title for rua
VARIABLES:
ENGABS Energy absorbed per cycle of oscillation
ENGSTO Energy stored (=.5 * max. strain * max. stress)
BTA Loss factor
sDC Specific damping capacity
VARIABLE ARRAYS:
EPSLON(K) Axis strain (index X rep. time)
STRESS (K) Axie. stress (ilndex X xep. time)
Z(X) Axial stress passed from INTPUN (index X rep. time)
SUBROUTINES:
DERIV Contains the differential eqs. (invoked by FNTXUN)
INTPUN Integration routine (4th order forward Runga-Kutta)
MAXIM Determines the min. & msx. valueg of an arxay
STRLEN Count.s the nvmber of characterz in a string
PUNCTION SUBPROGRAMS:
FRP(X) Error function of X
FPACT(K) K factorial
SGR(V) Signum function of V
URIT(X) Unit step function of X

NQAONNNANONNNNNNAANONNNANANNNAANAAANNNANNNANANNANNNNANANNANANNANNNN

IMPLICIT REAL*8 (A-H,0-Z)

INTEGER NEQ

REAL*8 DERIV,FLOAT,T,TEND,TOL,%(20),R
DIMENSION EPSLON(1001),STRESS(1001)
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CEARACTER®20 FILENAME
CHARMCTER*70 TITLE,SY,SH,SN,SALF,SE0,SA,SPT,O0P
CHPRACTZR*(*) SARi,SARZ2,SAR3,8AR4 ,SARS,SARG,SkR7,SARP
PERAMETER {SARlwm'e0=')

PARAMETER (SARZ="Y=')

PARAMETEL (SAR3m‘'Ee'})

TARAMETER {SARd='n=')

PHRAMETER (SARS='aifa=’)

PARAMETER (SARE€w'a=')

PARAMETER (SAR7='fT=')

PARAMEFER (SARP='wP=’}
COMMOR/BLORL/AMP, GMEGA, ¥, E, VHEWIN, ALFA, N, BPSINO, A, FT

I
REQ = 1
T o 6.0
L(iy = 0.0
c

Ce=nusl Intaractive input of filencmesz for the material data input £ile
[of and Tor ocutput files.
(o]
WRITE({*,*¥) 'Enter the name of your input dxata file.'
IYL=9
1 RERD(*,2,VITENAMY
2 PORMAT(AN)
WRITE(*®,3)PILENAKE
3 PORMAT{' ',3X,A20)
IP(IFL.EQ.9)THES
OPEN{IFL,PLLE~FPILENAME, STATUS=~'CNRNOWL. ')
ELSE
OPEN(IFL,PILE~FILENAME, STATUS* 'GHENOWR ')
ENDI¥
IF (IFL.EC.9) THEN
WRITE(*,*) 'Batex ncse for the plot file for STRESS ve. EPSLON'
IPL=10
G) 7O 1
ERNNI?
I7 (IFL.ED.10) THER
WRITE(®;*) 'Enter name for the summary text file'
IPI=11
GO 0 1
ENDIF
REWIKD 09
REWIND 10
REWIND 11
c
Crm=w=> Read input quantities from input file.
C
READ(S.5;TIYLE
REAL{S, '(A)')SY
READ(9, ‘' (A)')S*
RRAD(I, "{A)')SN
RE?D(9, ' (&) ' jSALP
S5 FORMAT(A)
READ(9,* B, VNEW
READ(2,*}Y
READ(S,*)ALFA
READ{9, *)%
[od

Cevmmod> Interactive input of other material parameters, strain amplitudz,

o] ana umbex of cyclee of loading to be used in calculations.
(4
WRITE(*,*)' Enter BPSLWO®
PEAD(S, ¥ )BPSLNO
WRITE(*,*)' Enter cheracter atring for BEPSLNO'
READ(5, "{A)’SEO
4RITE(*,*) Enter A AND FT'
REBAD(5,*}R,PT
WRITB(*,*)' Zater cheracter etring ror a’
READ(S5, " (k)"
WRITE(®.*)' Enter character striag for £7°
REAL{5, '(A)')SPT
WRITE{®,*}' Enter ¥YREQ and AMP'
READ(>,*)FREQ,AMP
WRITE{*,*)' Bi.ter choracter string for Pesk Strain (i.e. AMP)'
RBAD(5, ‘' (A)')SRP
WRITE(*,*)' Enter Kumber of Cycles and Number of Pointe per Cycle’
READ(5, 7 )NCYCLE , HPPCYXC
C
Come=z> yaternipe lergth of various character strings for later use.
c

LF3)
£
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:

STRLEN(SE0, IBSEO, IESEC)
YT, STRLEN(SEP,IBSEP, IPSEP)
STRLZN{SY, IBSY, IESY)
STRLEN(SE, IBSE, IRSE)
STRLEHN (SN, IBSN, IESK)
STRLEZN( SALF, XBSAL?, IESAL?)
STRLEN{SA, IBSA, iBSA)
STRLEN(SPT, IBSFT, IESFT)
STRLEH(SAPR1, IBSARL, ISSARL)
STRLEN{SARZ2, IOSAR2, TESAR2)
STRLEX (SAR3, IBSAR3, TESAR3)
STRLEN (SAR4 , IBSARS , TESARY )
STRLEN ( SARS , IBSARS, IZSARS)
T, STRLEN(SARS, IBSARG, TZSARG )
STRLEN (SAR7, IB5ART, TESARY )
CALL STRLEM(SARP, IRSARP,IESARP)

g

FREEEEERERERE

c
ISUM] = IZSAR1 + 12SE0 + 2 + IEBSARP + IESEP
ISUK2Z = YBSAR2 + IEBSY + 2 + IESAR3S + IESE
ISUM3 = Ic£sAR4 + XEEM + 2 + IBSARS + IESALP
ISUM4 = IFSAR6 + IESA + 2 + IESAR7 + IBSPT
c

Crmamum=> Calculate the quantity Pie3,14159267..., and ether paraxeters

<
PI=DACOS(-1.9500)

C
OM2GA = 2.*PI*FREQ
VHEWIN « .5 - ALPA*{.5-VMEW)/({1,+ALFA)
HSTEPS = NCYCLE*BPECYC
PRINT *,' MNSTEPSe',NSTEPS
PERIOD = 1,/FREQ
DEL? = PERYOD/HPECY(
PRINT *,' RELT=',DELT
(o4
Cmmexce> Set initinl counditions,
c
STRESS(1) = 0.
EPSLON{1) = 0.
WKITE(*,99955)
99993 PORMAT(4X, 'ISTEP',SX, 'STRAIN',9X, 'STREBSS')
(o
Ces»om> Carry out the anumsrical integration
(o4

DO 10 ISTEP = ) ,KSTZPS
CALL IRTFUR(Z,T,lBLT,HEQ)
STRESS{ISTZP+1l) = Z(1)
¥PSLOK{ TSTEP+1) = AMF ¢ DSIH{CMEGA®T)
WRIT2(*, '(3X,%6,4(3X,810,4}) ' )ISTEP, EPSLON (ISTEP+1),%(1)
10 CONTIRUF
o~
C=mu==> Compute damping.
c
TALL MAXTIM({STRESS, NSTEPS, STRMIN, STRMAX)
ZNGABS = 0.
LSTART = FERPCYUC/4. + 1
IBND = ISTART + NPRCYC-1
D) 50 I=ISTART,IERD
ZHCABS = ENGABS + .5 * (STRESS(I+1) + STRESS(I}) *
> (EPSLON{I+1} - BESLON(I))
50 CORTINUR
BHGSTO = ,5*STRMAX*AMP
PTA « ENGHBS/{2.*PI*ENGSTO)
SDC = ETA*2*PI
C
C=m=moa> Write resuits o output data file (unit 10} and to output
c tene file (unit 11).
c
WRITE(10, '{1X_2(216.8,'","'"); ") (BESLON(I),STRESS(T}, ¥=1,LETEPS)

TRITEIIY, (BX,''0 *',I2,°" "' ,A,A%5A,A """ )Y
> ISUM1, SAR1,SEO(ISSEG:IEST0), SLRP, SEP/ {ESEP: YESEP)
WRITE{11, '(5X,'‘1 *',I2,°" "'' AR, 2K,3,A,'' """)"
> ISUM2, SARz,SY(IBSY:IN3Y}, JAR3, SE(IBSE1TESE)
WRITE(12, '(5&,''2 *7,I2,°'° “"',B,R,2K,BA,2,''“"°}")
> YSUM3, SPRE, SN(IBAN1IELN ), SARS ; SKL¥ ( IBSALF : IESALP)
WRI’IB(I!.,'(SK,"S ..,I:,'. -.o'A,A'zx,A'A'nunat)u)
> ISUM4, SKRA, SA(XBSA:TESA), SAR7, SPT{ IRSFT1TESPT)
WRITB(1L,'(5X,'*4 28 “he'’,19.4.2X, ' 'SDC='",29.4,°'”"*)*)BTA,S0C
PRIR® *,' 1LOSS PACTOR~',2TA,' SDCe’,8DC
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1006
1902
1200
1201
1500
1501

PORMA®(2.70)

PORMAT(2A60)

FORMAY(' ',3X,'1',5%,17)
FORMAT(' ',3%X,'2',5%,17)

FORMAT(' ',5X,B10.4,5X,P10.4)

PORIMAT(' ',5%,B10.4,3%,E30.4,5X%,810.4)

S'TOP

EXND *

SUBROULIKE DERIV(S,T,ZLOT)

IMULYCIT RERL*8 (A-Y,0-%)

T*.TEGER. NZQ

REALYS OMEGR,'T.2{20),TD0Y (20,44, LORDD
COMMON/BLOKL/AMP , OMBGA, Y, 7, VKEWIN, ALFA, NN, P2SLNO, &, PT

EPSION = AMP # DSIR{MEGA®T)

EPDOT = BHE * (MEGP. * DCOS(OMEGA®T)

LOADD = ZPSLOMFERDOT

DLTAEP = DEBS(EPGLOK) -~ EPSLHO

I¥{DLTREP.L{T.0.0) THEY
BETA=(E*ALPA}*{ EPSLON ~ 2(3)/2 +

> FT2ERF(¢. (1 AVNEWIR) /3. *A*EPSLON) *URIT (-LOXDD) )

I7(WM.EQ.1.0)THEN
ZDCT{1} = E*( BEDCT - 2.%t(1.+VNEWIN)/3.°DABS(EPDOT)*

> {(2(1)-BETA}/Y )

-

c

ELSE
2DOT(1) = BE%{ EPDOT ~ 2.*(1.4VNEZWIN)/3.*DARS(EPDOT)®
- (DABS(Z{1)~BETA) /Y}A*(HN-1)*(Z(1)-BETA)/Y )
ZHDI¥
PLSE
270 (1) = E°EPBCT
BRDIF
RETURY
END

Cmwumuncue>™ End of UNIAXIAL.FOR

EXAMPLE OF AN INPUT FILE:

SHMA Hysteretic Model with Zlasticity Outside e0
855 psi

28.5x106 psi

3

.818

28.ZE06 6.35

855,

0.818

3

35
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APPENIMX C

FORTRAN MAIN PROGRAM (ali subroutines and function subprograms that arc not
specifically re ... 1t the calculations being made here are given in Appendix H):

Cxusers.nmane>dProgran £axe: SHEAR.POR

[o]

Comrec> This program will carry cut a Runge-RKuttaz integration on the

: stresg~strain equations of the SMA hysterctic xodel foxr SHEAR
loading. Notc that inelastic behavior is supresced beyond GAMMAOQ.
Sclculated results for the stress-struln responze are written
to uset defined nutput data files wharxe the data is arrenged

in two colums with strain in the first column and Jtress in the
gecond. The loading sequence (hysteresis) aturts with the first
line of the file and proceeds in order to the laast line.

The resulting data files can be used to pio* the curves via
GRAPIZR, which reads ASCII data file with data

arrangeG in columnn pairs.

(]

o)

NOMENCLATURE $

2EAY, CONSTANYS:
A Material constan* controlling shape of hysteresis
ALFA =Py/(E-Py) wheve Ev iz the ineclastic modulius
AMP Amplitude of strair input

B Young'‘'s modulus

G Shear mcdulus

GAMMAO Strain beyond which inelastic growth is supressed

FREQ Frequency of cyclic strain input

PT Haterial constant controlling size of hysterxesis

N Overstress power (controls aharpness of trans.tion to iael.)
VNEH Poisson's ratio

Y Axial Stress where damping mechanisms are activated

¥s Shear Strees where damping mechanisms are activated

INTEZGEP. CONSTANTS!?
NCYCLE No. of cycles of oscillation
NPPCYC ¥Nr. of points per cycle to be used in integration

CHARACTER STRINGS?
PILENAMY string for filencme assignment to a FORTRAN unit nucber

SALY atring for material constant ALFA

8A gtring for material constant A

SG string for the shear pouius €

sGO0 string ter liwmjiting ztrain Sredn

SGe atring for peak strain A

SPT string for material constsnt P

SN etring for overstress pover B

S¥Ys string for shear stress whers damping mechanisms activate: ¥S

TITLR degcrigtive title for run
VARIARLESS

ENGABS Brergy absorbed pexr cycle of oscillatien

ERGSTO Znergy stoved (=.5 ¢ max. strain * m:axX. stress)

ETA Loss fastor

soC Specific damping capacity
VARTABLE ARRAYS:

GAMMA (K Sheay strain {index X rep. time)

TAU(K) Shear stragg (iadex X xep. time)

Z{Xi Shear strsss passed from INTFUN (index X rep. time)
SUCROUTIRES:

DERIV Contains ijis differential egs. (invoked by INTPUXN)

JNTEFUX Integration routins (4th order focward Runge-Rutta-

Kaxi Dstermines the sin. & men. velues of an arxay

STRLER Counts the number of characters in a string
FURCTION SUBPPCUGRAMS:

ERF(X]} Errov function of X

FACT({X) K factorial

SGH(V} Signwe function of V

URIT(X) Unic step function of X

GOOOGAANOOO0NNGHOANDANNNAAANNROO0AOCAANRGRANNNNANNANNQNGANNDINANAAANNNANNN
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k3
13

IMPLICIT REAL*8 (A-H,0-2)

INTEGER NEQ

REAL®G DERIV,FLOAT,T,TEND,TOL,%Z(20),N

DIMENSION GAMMA(1001),TAU{1001)

CHARACTER*20 PILENZME

CHARACTER®70 TITLE,SYS,SG, SN, SALP, SGO, SGP, SA, SPT
CHARACTER®(*) SAR1,SAR?2,SAR3,SAR4,SARS,SARS, SAR7, SARP
PARAMETER (SARI='g0=')

EARAMETER
PARAMETER
DARAMETER
PARAMETER
PARAMETER

(SAR2="'Yg="')
(SAR3a'Gw" )
{SAR4='n="}
(SARS='alfa=")
(SARf="'aw')

PARAMETER (SAR7='fT=')
PARAMETER (SARP='gPa'}
COMMON/BLOK1/AMT ,OMEGA, YS, E, G, ALFA, §, GAMMAO, A, PT, RAD3

EEQ = 1

T=0.0
Z(1) = 0.0
C
Ce===wa> Interactive input of filenames for material data input file, and
c for output files contaning data and text.
C
WRITEZ(*,*) 'Enter the name of your input data file.'
IPL=9
1 READ(*,2)FPILENAME
2 FORMAT(A)
WRITE (*,3)PILERAME
3 FORMAT(' ',3X,A20)
IF(IFL.EQ.9)THENR
OPEN(IPL, PILE=FILENAME, STATUS~ ' UNKNOWN')
ELSE
OPEN(IFL,FPILE=FILENAME, STATUS="'UNKNOWN")
ENDIP
IP (IFL.EQ.9) THEN
WRITE(*.*) 'Enter naxe for the plot file for TAU va. GAMMA'
IPL=10
GO T0 1
ENDIP
IP (IPL.EQ.10) THEN
WRITZ(*,*) 'Enter name for the summary text file'
IFL=~}11
GO TO 1
ENDIF

REWIKD
REWIND
REWIND

09
10
11

C
C=m==wx> Read input quantities frcm input file.
C
RPAD(9,5)TITIE
READ(S, ' (A)"')SYS
READ(9,'(A)')SG
READ(9, '(A)')SN
READ(9, ' (A)"')SALP
5 PORMAT(A)
[of
Cm===x> Read in uniaxial properties; convert to shear properties later.
[of
READ(9,*)2,VNEW
READ(S,*)Y
READ(9,*)ALPA
READ(,*}H
c
C==m=z> Interactive input of other material parameters, strazin amplitvde,
c and number of cycies of loading tc be used in calculations.
C
WRITE(*,*)' Enter GAMMAO'
RZAD(S, *)GAMMAO
WRITE{*,*)' Enter character string for GAMMAO'
READ(S, ‘ (A} ' )SGO
WRITE(*,*)' Enter A AND FT'
READ(S,*}A,PT
WRITE(*,*)' Enter character string for a'
READ(S, ' (A)‘)SA
WRITE(*,*)' 2nter character string for f7'
READ(S, ' (R) ' }SFT
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“r{*,%}' Enter PRRQ and AMF »nf ghear strain loading'
READ{S5, *)REQ, P
WRITE({*,*)' Enter claracter string for peak shear strain’
READ(5, ' (Ah) ' )SGP
WRITZ(*,*)’' Enter Fumbaor of Crcles and Lueber of Points per (ycle'
READ(S, *)NCYCLE, RPPCYC
(o
Cemxem> Dsteraine leagih sf varicus character atrings foc iater usze.
Cc
CRLL STRLEN(SGC, 73530, IESCY)
CALL STRLENK{SGP, IBSGY, IESGF)
CALL STHLER(S5VS,IBSYR,IBSYS)
CALL STRLEH(RG,IBSG, IESG)
CALL STRLEN(SN,IDSH,IESN)
CALL STRLEN/(SALY,IBSALF, T£SAL?)
CALL STRLEN(¢‘,IBSA,JESA)
CALL STRLER({SPT,IDSFT,ISSPT)
CALL STRIEN(SARIL,IBSARI1,IZSAR])
CALL STRLEH(SARP,IBSAR?P,IESZRP)
CALL STRLER(SAR2,IBSARZ,IESAR2}
CALL STRLEN(SARJ,1BSAR3;IESAR3)
CALL STRLEN(SAR4, IBSAR4,IESAR4Y)
CALL STRLEN({SARS, IBSARS, IEBSaRS)
CALL STRIEMN{SAR6,IBSARS.IESARG)
CALL STRLENR(SAR7,1BSAR7,IESAR7)

Q

ISUM1
ISUM2
ISUM3
ISUM4

IBSARI + IBSGO + 2 + IESARP + IESGP
IESAR2 + IESY + 2 + IEZSAR3 + IBSE

JESAR4 + IBSK + 2 + IBSARS + IES2LY
IESAR6 + IEBSA + 2 + IESAR7 4 IESFT

C
C==wrex> Calculate the guantity Pi=3,14159257..., and other parazeters.
[
PI=DACOS(~1.0D00)
RAD3=3,.*% .5
G = =/{2.*(1+VHEW))
Y5 = ¥Y/RaD3
OMEGA = 2.*PI*FPREQ
PRINT *,' PI=',PIX,' QOM¥EGA=',OMEGA
NSTEPS = NCYCLE*NPPCYC
PRINT *,' NSTEPS=',6NSTEPS
PERIOD = 1./FPREQ
DELT = PERIOD/NPPCYC
PRINT *, ‘' DELT<',DELT
(4
Crma=zx> St initial conditions
C
TAU{1) = 0.
GAMMA(1l) = O.
C
WRITZ(®,99999)
99929 PORMAT(4X, 'ISTEF',5K, 'TIME',9X,'21',11X,°'22")
[o]
Cuewand> Carry out the numerical iategratiox
(o]
DO 10 ISTEP ~ 1.NSTZPS
CALL INTFUN(Z,T,DELT,NEQ)
TAU(ISTEP+1) « 371)
GAMMA (ISTEP+1) = AMP * DSIN(OmuGA*T}
WRITE(*, '{3X,16,4(3X,E10.4)) " ' }ISTEP GAMMAISTCP+1),2(1}
10 CONTINUE
[
C
CALL MARIM(TAU,NSTEPS, TAUMIN, TAUMAX)
ENGABS = 0,
ISTART = HPPCYC/4,+1
IERD = XISTART + NPICYC~-1
DO 5C I=ISTART,IEND
ERGABS = ENGABS + .5 » (TAU(I+l) + TAU(I}) *
> (GAMMA({I:1) - GAMMAIIL))
S0 CONTIRUE
ENGSTO = ,S5*TAUMAX*AMP
ET2 = ERGABS/(%."PI*ERGSTO)
SDC ™ BYA*22p3

c

Cxwrwr> Write the vesults to output aats £ile (unit 10) and to output
c text file (unit 11).

C

RITE(10,'(1X,2(E16.8,"'," ")) ) (GRMHA(I),TAU{1), L=1,NSTERS+1)
WRIT2(11,'(iX,''0 fr.x2, ""A'A‘zx'A'a -.q-.).)
> 1sUM1,SAR1, 360 | IBSGO: X2SA0) , SARP, SGP (IBSGP: IXNCP)
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WRIT'E(il,'(lX,"l IQ’IZ’ll "',A,AIZX,A,AI..-.').)

> ISUM2,5AR2, SYS{IBSYStIESYS) ,SAR3, SG( IBSG: IESG)

KRITB(IJ., (1%,°'2 *',12,°'" **',A, AL2X, AR, "))

TSUM3, SAR4, SN (IBSN:IESN), SARS, SALF ( IBSALF : TESALF)

mwmuL(uf%"nn'"uaauanf"“y)

> ISUM4, SAR6, SA(IBSAIIESA), SAR7, 577 (IBSFT1 TESPT)
WRITE(13,'(1X,''4 28 “ETA='',E9.4,2X, ' 'SDC="",E9.4, """ ") ')ETA,SDC

PRINT *,+ LOSS PACTOR=',ETA,' SDC=',SDC

1000 PORMAT(AZ0)

1003 PORMAT(2A60)

1200 PORMAT(® ',3X%,'1",5%,17)

1201 FORMAY(® ‘,3X,.'2',5X,17)

1500 PORMAT(' ',5X,E10.4,5%,E10.4)

1501 FORMLT(' ',5%,E10.4,5X,B15.4,5%,B10.4)
STOP
EHD

SUBROUTINE DERIV(Z,T,ZDOT)

IMPLICI? REAL*8 (A-H,0N-3)

INTEGER HEQ

REAL*S OMEGA,T,%(20),3DDT(20),KN, LOADD
COMMCN/BLOKL/AMP, 0¥ GA, YS;E,G,ALPA, NN, GAMMEO, A, PT, RAD3

GAMMA = AMP * DSIN(CMEGA*T)
GEMDCT = AMP * OMEGA * DCOS(OMEGA*T)
DLYAGA = DABS(GAMMA} -~ GAMMAC

YF(DLTAGA.LT.G.0 ) THEN
B2TA=(1./3.)%(E*ALPA)*( GRMMA - Z{1)/G +
> RAD3*FT*ERP (A*GAMMA/RAD3 ) *URIT ( ~GAMMA*GANDOT) )

IP{NK.BQ.1.0)TEEN
ZDOT(1) = G*( GAMDOT - DABS(GAMDOT;*{2(1)-BETA)/YS )

BLSE
SDOT(1) = G*( GAMDOY — DAES(GAMDOT)*
> (DABS{2{1;~RETA)/¥S)" #{KN-1} ¢ (Z(1)-BETA)/¥S )
ENDXP
ELSE
$DOT(1) = G*GAMDOT
ENDLF
RETURN
END

-~
-

Cmx=amsuws> SHEAR.FOR

EXAMPLE OF AN INPUT FILE:

SMA Hysteretic Mcdel for Shear with Zlasticity Cutside g0
394 »si

30,%6x126 psi

3

.818

28.5B06 0.35

855.

0.81%

3

40
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APPENDIX D

FORTRAN MAIN PROGRAM (all subroutines and function subprcgrams that are not
specifically related to the calculations being made here zre given in Apperdix H):

Cromwimecuma> Program Rame: SDUA.POR {for Strain Dependent Unijxial resporse)

[¢]

c-utn-> *his program is different from UNIAXfAL.POR in that it

repsats the cycliic strain application cver a specified range

for a given number of peak strains, an’ it calculates the loss
factor associated with sach. Runga-huttas integration will be applied
to tne streas-strain equaticnes of the axial SMA hysteretic model.
Hote that ine‘astic behavior ig supresszed beyond EP3LNG.

Pilec will be ‘enexated vhich contain data for the plotting

of Peak Strain vs. Bnergy Abrorbed, Peak Strain vz. Loss Pactor,
Peak Rguivalent Srain vs. Energy Ab: orbed, and Peak Eguivalent
Strain vs. Loss Pactor. Pile Pormat ¥ill be that of GRAPHER;
ASCII datr is arranged in column pairs. Datz iz arranged in

two vertical columnz +vith strain {or eguivalent strain) being

in the first columr and loar factor {or energy absorhed) being
in the second column. A short set of fats summarizing the run

ia written to a vser defined text file.

nonNoOOnNAONOCANINNANANOGOaNOOOONANNNNNaNAOAAGONRNNANNNGANNRNANACNNANRNGN

ROMERCLATURE:

REAY, CONSTARTS:

A Haterial constant controlling shape of hysteresis
2LPA =py/{(B-By} where 2y is the iselastic modulus

AMP Arplitude of strainm input

B Young's modulus

EPSiN0 Strain beyond vhich inelastic growth is supressed
EPSPh1 Minimum pezk strain

BPSPK2 Maximir peak strain

FREQ Frequeacy of cyclic gtrain input

PT Mzterial constant controlling size of hysteresis
N Overstress power {(controle sharpnese of transition to inel.)
VNEW Poisson's ratio

VHEWFN 1Inelatic Poisscn coefficient

Y Stregs where damping mwechzniems are activated

INTEGER CONSTANTS:

NCYCLE No. of cvcles of oscillation
NPPCYC No. of points per cycle to be used in integration
NIRC No. of in.rements for the range of peak strain

CHARACTER STRINGS:

PILENAME string for filename essignment to a PCRTRAN unit number

SALP string fox material constant ALFA

SA string for materisl constant X

SB string for Young's modulus B

SEO string for limiring strain EPSLNC

SPT string for mzterial constant PT

SN string for cverstress gcwer M

sy string for stress where damping mechanisms activate: ¥

TITLR descriptive title for run

VARIABLE ARRAYS:

ENRGAB({) Znergy absorbed in ore cycle (I rerrxesents position)

ENRGST(T) Bnergy absorbed in one cycle (I represents position)

BPSLON(K) Axial strsin (index X rep. tiwme)

ETA(I) Loss factor (I represents position)

PEAKST(I) Peak strain {(index I reprcsents position)

PKEQST(I) Peak equivalent 2train (index I represents position)

STRESS (K) hxial stress (index X rep. time)

Z(K) Axial stress passed from INTPUN (index K rep. t:ime)
SUBRCUTINES:

DERIV Contains the differentizl egs. (inveked »y YHTFUN)

INTPUN Integration routine (4th order forward Runge-Kutta)

MAXIHM Determines the min. & max. values of an array

STRLEY Counts the number of characters in a string
PUNCTIGH SUBPROGRAHS!

BRP(X) Brror function of X

PACT(K} K factorial
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SGN(V) Signum function of V
UNIT(X) Unit step function of X

[eXeNeKeNel

IMPLICIT REAL*8 (A-H,0-L)
INTEGER RREQ
REAL*8 DERIV,FLOAT,T,TEND,%(20),N
DIMENSION EPSLON{(1001),STRESS(1001),
> PRAKST(200),ETA{20C),BNRGAB(200),BNRGST(200) ,PKEQST{ 200)
CHARACTER*20 PILENAME
CHARACTER*70 TITIE,SY,SE,SN,SALP,SEQ,SA,SFT
CAARACTER* (*) SAR1,SAR2,S5AR3,SAR4,SARS,SARG,S5aRS8
PARAMETER (SARl='eO»')
PARAMETER (SAR2='Ys')
PARAMETER (SAR3='Ew')
PARAMETER (SAR4=‘n=')
PARAMETER (SARS='an'}
PARAMETER {SARE='a~'}
PARAMETER (SARS='fT=')
COMMCH/BLOK1/AMP, GMEGA, ¥, B, VNEW, VNEWIN, BPY, ALFA, N, EPSI.NO, A, PY
(o]
NEQ = 1
c
C=mxwa> Interactive input cf filenames for tche mwatericl data input file
c and for output files.
Cc
WRITE(*,*)'Enter the nawme of wouxr input date file.'
IPL=9
1 READ(*,2)PILERAME
2 PORHMAT(A)
WRITE(*®,3)PILERAME
PORMAT{' ',3%,A20)
I?(I7L.BQ.9)THER
OPEH(I1FL,FILE=PILENAME, STATUS="'UNKNOWN ')
ELSE
OPEN(IFL, PILE=PILENAME, STATUS="'UNKNOWN ")
ENOIF
IP (IPL.EQ.9) THENW
WRITE(*,*) 'enler name of piot file for Loss Pac. vs. Peak Str.'
If1=10
GO 10 1
ENDIF
IP (IFL.EQ.10j) THEN
HRITE(*,*) 'Enter nsxe of the GRAPHER legend taxt fila'
IPL=13
GC TO 1
ERDIF
IF {fFL.EQ.11) THUN
WRITE(*,*) 'Enter filenawe for Energy absorbzd vs. Peak Strain.'
IFL=12
GO TO 1
ENDIP
IP (IPL.BQ.12) THEH
WRITE(*,*) ‘Bnter filename for Loss Pactor vs. Peak Fqiv. Stxain'
IFL=13
GC 10 1
ENDI¥
IP (IFL.EQ.13} THEN
WRITE(*,*) 'Enter filename for Bnergy Abe. vs. Peak Egiv. Strain’
IFL=14
GO TG 1
ENDIP
REWIND 09
REWIND 1C
RZWIHD 1]
REWIKD 12
REWIHD 13
REWIKD 14

w

o4

C==xx=> Read inmnt quantities frem input file,

(o
READ(3,5)TITLE
RPAD{9, ' (3} ')SY
READ{9, '{A)')SE
READ(S, *(2)')SN
READ(9, "{A) ' )SALF

5 FORHMAT(h)

READ(S, *)EB, VNEW
READ(9,*)Y
READ(9, *YALPA
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READ(9,*)H
éu«uw-) Interactive iuput of other materiel param.ters, strair zmplitude,
(o and aunser of cyclez of icading to be used in calcu'atic as
(o

WRITE(*,*)' Enter EPSLMNC'

READ{S5, *;EFCLRO

WRITE(*.*)’ EPSLNI=', EPSLNO

WRITE(*,*)' Eater charrcter string for EPSING'

RERD{3, ‘(A)')SEO

WRIYZ(*, ' (1X,'' SEO~ * A}',SEC

YRITE(*,%)‘' Enter A 2¥D PT'

READ({5,*)A,?T

WRITE(*,%)’ An',A,' PT=',F¥

RRITE{*.*;,' Enter ckaraclar string for &'

READ(5, ' (R)')5A

WRITE(*, '{1%, "' Sa="',A)')SA

WPyL2(*,*)’ Buter character c(triag for £t

READ(S, '(A)')SPT

#RITE(®, *(1X,** SPT>'‘ ,A)')EPT

WRITR(®,*) " Enter FREG, EPSPX1. & RPSPR? (ain and max peak stx.)'
EBAD(S5,.*)¥REQ,EPSPX1,EPSPR2

WRITE(*,v;' ¥REQ=',PRZQ,' EPSPLl=',6EPSPK1,' EPSPrI='  BPSPK2
WRITE{*,*)' Bntsr Ko. of Cyciee znd No. of Peints per Cycls'
REPS(S, *)HLYCLE  MPFCYC

WRITE(*, %)’ NCYCLE=' NCYCLE,' NPPCY =", HOPCYC

WRITZ{*,*}"' Enter NINC {No. of incremernts bat. peak strains)’

(o
C=cwr=> Daterajle length of ~»aricua character strings for later vge.
c
CALL STRLEN(SPO,IBSEQ,IRSE0)
CALL STRLEN(GY,IBSY,IESY)
CALL STRLZN(SE,IBSE, iESE)
CALL STRLEE({SN,IBSH,IESN)
CALL STKLEN(SALY,IBSALY, I2SALF,
CRLY STRLFH(SA,IBSA, LEBSA)
CALL STRLEN(SPT, IBSPT,IBSPT)
CALL STRLBN(SARI,IBSARI,IESARI)
CALL GYRLEV(SAR2,IBSAR2,IESARZ)
CALL SYRLEM (SAR3, IBSAR3, IESARS)
CALY, STRLEN (SAR4 , IBSAR4 , IRSARS)
CALL STRLEN{SARS, IHSARS5, XESARY)
CALL STRLEH(SARG .INSARG, IBSARE}
TATYL STRLEN(SAXS,1BIARE.IESARG)

XSUMl = IESARI + YBSEQ
ISUM2 = I¥SAR2 + IESY +2 +IBESAR3 + YESE
ISUM3 ~ IRSAR4 + X2SN + Z + IBSMR5 + IESALFY
ISUM4 = YESARC + ISZSA + 2 + IESARS +IESPT
<
Cxmm==> Calculate the quantity Pie3.14159267..., and other parameters
Cc
PI=DACOS(~1.0006)
O¥EGA = 2,%P)*FREQ
PRINT +,' PIe’,PT.' ONEGA=',OMREGR
VNCWIH = .5 - ALFA¥(.5~VNEW)/(].+ALFA)
BPY = Y/¥
¢ VNEWIN=' VHEWIN,® EPY= ' ,EPY
NSTEPS = NCYCLE*NPPCYC
NSTPT) = MSTEPS r 1
PRINT *,' MESTEPS=" NSTEPS
PERIOD = 1./YREQ
DELT = PERIOD/NPPCYC
PRINT #,' DEL=',DELY
EPSINC = (BPSPR2-EPSFX1)/NINT
ISTART = NPPCYT/4. + 1
IEND = ISTART + NPPCYC-1
o]
Cramwmx> get initial copditions.
c
STRESS(1} = 0,
EPSLON(i) = 0.
c
Cmeum==> sSet up the loop for carrying out integration for sach step ir. peak strain.
c
RINCP1 = NINC + 1
DO 7777 J=1,HINCP1
[od
Cemmum> Clear the arrays used ir the loop marked by 39 a2t the continue statement
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c Reinitialize T and Z(1).

C
PO 10 K=1,RSTPP1
EPSLON(K)=0.0
10 STRESS(K)=0.9
C
T = 0.0
Z(1) = 0.0
C
Cew=x=> Update the peak strain
C
AMP = EPSPK1 + EPSINC*(J-1)
PEAKST(J) = AMP
PKEQST(J) = (1+VNEW)*AMP
(o]
C====u=> Carry out the integration for the current peak strain
Cc
DO 30 ISTEP = 1,NSTEPS
CALL INTPUN(Z,T,DELT,NEQ)
STRESS(ISTEP+1) = Z(1)
EPSLON(ISTEP+1) = AMP * DSIN(OMEGA*T)
30 CONTIRUE
c
Cummuen> Compute damping for the current peak strain.
(o]
STRMIN = 0.
STRMAX = 0.
CALYL MAXIM(STRESS,NSTPPl,STRMIN,STRMAX)
ENGABS = 0.
C

DO 50 I=ISTART,IEND
ENGABS = ENGABS + .5 * (STRESS(I+1) + STRESS(I)) *
> (EPSLON(I+1) ~ EPSLON(I))
50 CONTINUE
ENGSTO = .5*STRMAX*AMP
ENRGAB(J) = ENGABS
ENRGST{J) = ENGSTO
ETA(J) = EHGABS/(2.*PI*ENGSTO)
WRITZ(*,'(3X,I3,3(3X,E10.4))")J,PEAKST(J),ENRGAB(J),ETA(J)
7777 CONTINUE
CALL MAXIM(ETA,NINCP1,ETAMIN,ETAMAX)

[
C=eax=> Write renults to output data file (unit 10, 12, 13, and 14) and to
[o] output text file (unit 11).
C

WRITE(10, ‘' (1X,2(E16.8,"'',"''))"')(PEAKST(I),ETA(I),I=1,NINCP1)

WRITE(11, ' (1X,''0 **,I2,°" ™'*,A,A,'""*")")

> ISUM1,SAR1,SEO(IBSEO:IESEQ)

WRIT'E(ll,'(lx,"l ..IIZI.‘ "‘,A,A,2X,A,A,""')')
> ISUM?,SAR2,SY(IBSY:IESY),SAR3,SE(IBSE:IBSE)
WRITB(11, ‘(1X,°'2 '',I2,'" "', A,A,2X,AA,"'"'")")

> ISUM3,SAR4, SN(IBSN:IESN),SARS,SALF (IBSALF:IESALF)

YRITE(11, '(1X,''3 *',I2,'' "'',A,A,2X,A,R,°''"“'")')

> ISUM4,SARG, SA(IBSA:IESA),

> SARS8, SPT(IBSFT:IESFT)

WRITE{11, '(1X,''4 38 "ETAmax='"',E9.4,2X,''ETAmin='',E9.4,''"'")")

>ETAMAX,2TAMIN

WRITE(12, ' (1X,2(E16.8,'',''))")(PEAKST(I),ENRGAB(I),I=1,NINCP1)

WRITE(13, '(1X,2(B16.8,'',''))")(PXEQST(I),BTA(X),I=1,NINCP1)

WRITE(14, '(1X,2(E16.8,"'',''))")(PKEQST(I),ENRGAB(I),I=1,NINCP1)

PRINT *,' ETAMAX=',ETAMAX,' ETAMIN=',ETAMIN
c

1000 PORMAT{A70)

1001 PORMAT(22460)

1200 PORMAT(' ',3X,'l',5X,I7)

1201 PORMAT(' ',3X,'2',5%,I7)

1500 FORMAT(' ',5X,E10.4,5X,E10.4)

1501 PORMAT(' ',S5X,E10.4,5X,E10.4,5X,E10.4)
STOP
END

SUBROUTINE DERIV(Z,T,ZDOT)

IMPLICIT REAL*8 (A-H,0-2)

REAL*8 OMEGA,T,Z(20),%DOT(20),NN,LOADD
COMMON/BLOK1/AMP, OMEGA, Y, B, VNEW, VNEWIN, EPY,ALPA, NN, EPSLNO, A, PT

EPSLOK = AMP * DSIN(OMEGA*T)
EPDOT = AMP * OMEGA * DCOS(OMEGA*T)
LOADD = EPSLON * EPDOT
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DLTAEP = DABS(EPSION) - BPSLNO

c
IP(DLTAEP.LT.0.0)THEN
IF(DABS(EPSLON).GE.EPY)THEN
DELTA = .5 - DABS(Z(1l)/EPSLON)*(.5-VNEW)/E
ELSE
DELTA = VNEW
ENDIF
BETA=(E*ALFA)*( EPSLON - Z(1)/E +
> PT*ERP((2.*(1.+DELTA)/3.)*A*EPSLON)*UNIT(~LOADD) )
IP(NN.EQ.1.0)THEN
ZDOT(1) = E*( EPDOT - (2.*{1.+VNEWIN)/3.)*DABS(EPDOT)*
> (Z2(1)-BETA)/Y )
BLSE
ZDOT(1) = B*{ EPDOT - (2.*(1.+VNEWIN)/3.)*DABS(EPDOT)*
> (DABS(% (1)-BETA)/Y)**(NN-1)*(Z(1)~BETA)/Y )
ENDIF
ELSE
ZDOT(1) = E*EPDOT
ENDIP
RETURR
BND
c

Cmmmmwnmnee>SDUA . FOR

EXAMPLE OF AN INPUT FILE:

SMA Axial Hysteretic Model with Elasticity Outside e0
855 psi

28.5x106 psi Vnew=.35

3

.818

28.5E06 0.35

855.

0.818

3
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APPENDIX E

FORTRAN MAIN PROGRAM (all subroutines and function subprograms that are not
specifically related to the calculations being made here are given in Appendix H):

Cm=mm=x=xs> Program Name: SDSH.FOR (for Strain Dependent SHear response)

(o]

C=====> This progrzm is different from UNIAXIAL.POR in that it .

repeats the cyclic strain applicaticn over a specified range

for a given number of peak strains, and it calculates the loss
factor associated with each. Runge-Xutta integration will be applied
to the stress-strain equations of the SMA hysteretic model.

Note that inelastic behavior is supressed beyond GAMMAO.

The applied loading is that of a pure state of shear stress.

We specify a maximum peak strain to be used in the sinusiodal
application of shear strain. The resulting curves for stress and
strain will be stored in data arrays and then will be

used to calculate the loss factor (damping). The data file will also
be in a fcrmat compatible for plotting with GRAPHER.

ASCII data is arranged in column pairs. Data is arranged in

two vertical columns with strain (or equivalent strain) being

in the first column and loss factor (or energy absorbed) being

in the second column. A short set of data summarizing the run

is written to a user defined text file.

NNAQAONANANNAANNNNNNNNNNANANNANANNANANANANNANNANANNAQNNANNNANNANANNNNNNAN

NOMENCLATURE:
REAL CONSTANTS:
A Material constant controlling shape of hysteresis
ALFA =Ey/(E~By) where By is the axial inelastic modulus
AMP Amplitude of strain input
B Young's modulus
G Shear modulus {=B/[2(1+VNKEW)]}

GAMMAO Strain beyond which inelastic growth is supressed
GAMPK1 Minimum peak strain

GAMPK2 Maximum peak strain

FREQ Prequency of cyclic strain input

PT Material constant controlling size of hysteresis

N Overstress power (controls sharpness of transition to inel.)
VNEW Poisson's ratio

Y hxial stress where damping mechanisms are activated

Ys Shear stress wher2 damping mechanisms are activated

INTEGER CONSTANTS:

NCYCLE No. of cycles of oscillation
NPPCYC No. of points per cycle to be used in integration
NIRC No. of increments for the range of peak strain

CHARACTER STRINGS:

PILERAME string for filename assignment to a PORTRAR unit number

SALF string for material constant ALFA

SA string for material constant A

sG string for Young's modulus G

SGO string for limiting strain GAMMAO

SPT string for material constant PT

SN string for overstress power N

sYs string for shear stress where damping mechanisms activate

TITLE descriptive title for run

VARIABLE ARRAYS:

ENRGAB(I) Energy absorbed in one cycle (I represents position)

ERRGS3T(I) Energy absorbed in one cycle (I represents position)

GRMMA (K) Shear strain (index X rep. time)

B2TA(I) Loss factor (I represents position)

PEAKST(I) Peak strain (index I represents position)

PKEQST(I) Peak equivalent strain (index I represents position)

TAU(K) Shear stress {(index K rep. time)

Z(K) Shear stress passed from INTFUN (index K rep. time)
SUBROUTINES:

DERIV Contains the differential egs. (invoked by INTPUN)

INTFUN Integration routine (4th order forward Runge-Kutta)

MAXIM Determines the min. & max. values of an array

STRLEN Counts the number of characters in a string

£
(@)
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FUNCTIOR SUBPROGRAHS:

ERP(X) Brror function of X
PACT(K) K factorial

SGN(V) Signum function cf V
UNIT(X) Unit step function of X

agaaoanaaon

IMPLICIT REAL*8 (A-H,0-%)
INTEGER NEQ

REAL*8 DERIV,FLOAT,T,TEND,TOL,Z(20),H

DIMENSION GAMMA(1001),TAU(1001),PBAKST(201),ETA(201),PKEQST(201),
> ENRGAB(201) ,ENRGST(201) \

CHARACTER*20 PILENAME

CHARACTER*70 TITLE,SYS,SG,SN,SALP,SGO,SA,SPT
CHARACTER* (*) SAR1,SAR2,SAR3,SAR4, SARS, SARG, SAR7
PARAMETER (SAR1='g0=')

PARAMETER (SAR2='Ys=')

PARAMETER (SAR3='G=")

PARAMETER (SAR4='n=')

PARAMETER (SARS='a="')

PARAMETER (SARE='a=')

PARAMBETER (SAR7='fT=')
CCMHON/BLOK1/AMP, OMEGA, YS, E,G,ALFA, N,GAHMAC, 5, PT,RAD3

C
NEQ = 1
C
C=====> Intsractve input of filenames for the material data input file
C and for output files.
c
WRITE(*,*) 'Enter the name of your input data file.'
IFL=9
1 READ(*®,2)PILENAME
2 PORMAT(A)
WRITE(~=,2)PILENAME
3 FORMAT(' ',3X,A20)
IP{IFL.EQ.9)THEN
OPER(IFL,FPILE=FILENAME, STATUS='UNKNOWN'}
ELSE
OPEN(IFL,PILE=<FILENAME, STATUS="'UNKNOWN')
ENDIP
IF (IFL.EQ.9) THEN
WRITE(*,*) ‘BEnter file name for Loss Pactor vs. Peak Strain'
IPL=10
GO TO 1
ENDIP
IF (IPL.EQ.10) THEN
WRITE(?,*) 'Enter name for the suxmary file'
IFL=11
GO TO 1
ENDIP
IF (IPL.EQ.11) THEN
WRITE(*,*)'Bnter filename for energy absorbed vs. pesk atrain'
IFPL=12
GO T0 1
ENDIP
IF (IFL.EQ.12) THEN
WRITE(*,*) 'Enter filename for loss factor vs peak equiv. strain®
IPL=13
GO T0 1
ERDIP
IP (IPL.EQ.13) THER
WRITE(*,*) 'Enter filename for energy abs. vs peak equiv. strain’
IPL=14
GO TO 1
ENDIP
REWIND 09
REWIND 10
REWIND 11
REWIND 12
REWIND 13
REWIRD 14
(o
c > Read input quantities from input file.
C

READ(S,5)TITLE
READ(9, * (A) ' )SYS
READ(9, ' (A)')SG
READ(9, ' (A)*)SN
READ(9, * (A) ' )SALF
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5 PORMA'T{A}
READ(9,*)8, VNEX
RERD(9,)Y
READ(9, * JALFA
READ(9,*)N
C
Cu=xn=> Interactive anput of other material parameters, strain amplitude,
c anéd nusber of cyciss of loading to be used in calculations.
C
WRITE(*,*)' Enter GAMMAO'
READ(5,* )GAMMAL
WRITE(*,*)' GAIi{20=',GAMMAD
WRITE(*,*)' Zmtar character string for GAMMAO'
READ(S, ' (A} ')SGO
BRITE(*, ' (1X, ' '8G0=""',A)"')8G0
WRITR(*,*)' Enter A AND F2'
RZAD(5,*)A, 27
HRITE{*,*)' a=',A,*' PT=',PT
WRITEB(*,*}' Enter character string for a‘'
READ(S, '(&)')3A
WRITE(*,'{1%,' 'SA="",R}'})SA )
WRITE({*,?)' Enter character string for f£7
READ(5, ' (B} " )SPT
WROTE{*, ' (1%, ''SPT="'"',A)'}SP?
WRITE{*,?)° ®nter PREQ, GAMPR:, & GAMPK2 (Min & Max Peak Strains)’
READ(S, * ) FREQ, GAMPK1 , GAMPKZ
WRITE(*,%)' FREQ=',FREQ, ‘' GAMPK1=',GAMFR],‘' GAMPK2x=',6GAMPK2
WRITE(*,«)' Bnter Humbey of Cyclesz and Number of Points per Cycle'’
READ(S,* )NCYCLE, NPECYC
WRITE(*,*)' NCYCLE=',RCYCLEZ,' NPPCYC=',HPPCYC
HRITE(*,*)' Enter NINC (¥o. of increments between peak strains)’
READ(S,*)NINC
WRITE(%,*)' NINC=' NINC
c
Cnunxew> Determine length of varioue character strings for later use.
C
CALZ, STRLEN(SS0,IB8SGY,IBSGO)
CALL STRLEN(SYS.IRSYS,IESYS)
CALL STRLEN(SG, IBSG,IESG)
CALZ STRLEN(SH.XYBSN, IESN)
CALY, STRLEM{SALF, IBSAL?, IESALF)
CALL STRLEN(SA,IBSA,IESK}
CALL STRLEN(S¥T, IBSFY,YESFT)
CALL STRLZN{SAR]l,IBSAR1, IESAR1)
CALl, STRLYN(S?R2,IBSARZ, TRSARZ)
CALY, STRLEH(SARZ,IBSAR3, IESAR3)}
CALY, STRLEHM(SARS,IBSARY, TBS2R4)
CALL STRLEN(SARS,IBSARS,IBSARS)
CALL STPLEN{SAR6 IBSARE,ITSARS)
CALL STRLEN(SAR7,IBSAR7,JESART7)

Isfl = YESAR! + IBSGO

ISUN2Z > IRSAR2 + 7 +IESER3 + 6

ISNM3 = IRSAR4 + IESN + 7 + TESARS + 1ESALT
ISUM4 « IESAR6 + IESA + 2 + IESAR7 + IEBSFT

o~
-

[o4
Ce=unmuan> Calculate the quantity Pi=3.314159267..., and other parameters
Cc
PXI=DATOS5(-1.0DGD)
FAD3 = 3.**.5
G = Z/(2.%(1+VNEY))
¥S = Y/RaD3
OMECA =« 2.*PI~FREQ
PRINT +,' FI=',BI,' OMBGR=',6OMEGA
NSTEPS » NCYCIE*KEPCYC
BRINT *,’ NSTRES=',KNSTEPE
PERIOD = 1./FREQ
DELT = PRRIOD/MPFCIY
DELGEM e (GAMPR2-GAMPRI)/NIRC
ISTART ~ NPPCYC/4, + 1
IEND =~ ISTART + NPPCYCs1

owna> Sat up the loop for carrying out iutegration for each step in
oaak strain.

[ XeNoRy!

HINCF1l = NINC + 1

DO 7777 J=1,HINCPY
<
C=su=n> Clear the arrays for straszf, strain, strain rste, and time.
Cc
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IC 10 K=1,NSTEPS
PAU(Ky=C.0
GAMMA(¥.)~0.0

Cm==ama> Update the paak atrein and reinitialize time and %(1).

T = 0.0
Z(1l) = 0.0

AMP = GAMPK® + LCELGAM*(J-1)
PEAKST(Z) - AMP

PFEQST(J) = RAD3*AMP,'2.

Cm=xux> Carry cut the integration for the current vask strain

DO 30 K = 1,MSTEPS
CALL INTPUN(Z,T;DELT,NEQ)
TAG{X+1) = 2(1)
GAMMA(X+1) = AMP * DSIR(UMEGA*T)

30  CONTINUE

[+

Co=mwax> Compute damping for the curveunt peai strain.

-~
~

50

TAUMIN =~ 0.0
TAUMAX = 0.0
CALI. ¥AXIM(TAU,NSTEPS, TAUMIN, TAUMAX)

ENGABS = 0.

DO 50 I=ISTARY,IEND
ERGABS = ENGABS + .5 * (TAU(I+1) + TAU(I)) *
> (GAMMA(I+1) - GAMMA({I))
CORTINUE

ENGSTO = ,5*7AUMAX*AMP

ENRGAB(J} = BBGABS

ERRGST(J) = ENGSTO

BTA(J} = ENGATS/{2.°PI*ENGSTO)
WRITR(%,'({3X,33,3(3X,216.4))")J,PTAXST(J),FFRGAB(J),ETA(J)

#777 CONTINUE

[+

Cc

CALL MAXIM(ETA,NINCP1,ETAMIN,BTAMRX)

C-m---> Write results to output data file (unit 10, 12, 13, and 14) and to

C

1000
1001
12090
1201
3500
1501

output text file (unit 11).

WRITE(19, ' (1X,2(E16.8,'",' ")} ") (PRARST(J),ETA(J),J=1, NINCP1)
WRITE(II,'(SX,"O ",IZ," "',A Al” ) )
> ISUM1,ZAR1, SGO{IBSGO: IESGO ]
WRI"B(II, (5%;°°1 **,I2,"'* "'*,a,P5.1,2% (A,B6LL, TRy
ISUM2,5AR2, ¥S, SAR3,G
wmmuL(ufv*'n"“nannAmu"”r)
> ISUM3,SAR4, SN{IBSN:IESN), SARS, SALF ( IBSALP: IESALF)
wmmuL(ﬂf@'un"“nAAnaau"“r)
> ISUM4,SAR6, SA(IBSA:IESA), SAR7,SPT(IBSPT: IESFT)
WRITR{11, ' (5X, ‘4 38 “gMin="'', B9.4,2%, " 'gHaxe'"',E9. 4,
> ETAHIN, ETAMAX
WRITB(I:,'(lX,zleG.B,","))')(PBAK T(J),ENRGAB(J; ,J=1,NINCP1)
WRITE(13, '(1X,2(E16.8,"" +'*1)") (PKEQST(J) \ETA(S } , S=1, NIHCPL)
WRYTE{14,'(1X,2(E16.8,""," ")} ') (PKEQST(J), ENREAB(J),Im1, NINCS1)
PRINT *,' MAX. LOSS FACTOR=',BTAMRZ

FORMAT(A75)

FORMAT ( 2A60)

PORMAT(' *,3X,'1',3X,I7)

PORMAT(' *,3%,'2'.5X,I7)

FCRMAT(' ',5X,BE10.4,5X,E10.4)

FORMAT(' *,5X,B10.4,5%,E10.¢,5X,E10.4)
STOP

2D

SUBROUTIRE DERIV(Z,T,3DOT)

IMPLICIT RRAL*8 (A-H,0-2)

REAL*2 OMEGA,7,2(1),%007{1),HN
COMMOE/BLOX1/AMP , OHEGA, ¥S, 2,6, ALPA, BR,GAMMAD , 5, PT, RAD3

GG = DMPeDSIR (OMEGA®T)

GANDOT = AMP*OMECA*DCOS (OMEGA®T)
DLTAGA = DABS(GAMMA) - GRMMAC

IV (DLTAGA.LT. 0.0 ) THEN
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BETA=(1./3.)* (E*ALPA)*{ GAMMA - 3(1)/G +
> PAD3F+ERF (AYGAMMA/RAD3 ) YUNIT{ ~GAMMA*GAKDCT) ;
IF{¥H.EQ.1.0)THEH
ZDOT{1) = G*{ GAMDOT -~ DABS(GAMDOT)*{Z(3}~BETA)/YS )
BLSE
ZDOT{1) = G¥{ GAMDOT - DABS(GHMDOT)®
> {DABS(Z{1)~BETA}/¥S)** (NH-1)*
>

{Z(2)-BETA)/YS )
ENDIF
BL3E
ZDOT(1} = GrEAMDOT
BNDIKF
RETURE
END
¢
Cunmmmnrax>§DSE, PFOR

EXAMPLE OF AN INPUT FILE:

SHA Shear Hysterstic Modal with Blasticity Cutside g0
494 psi

20.56x106 psi
3

818
78,5806 0.35
855,
v.gle
3

50
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APPENDIX F

FORTRAN MAIN PROGRAM (ali subroutines and dunction subprograms that are not
specifically related w0 the calculations being made here are given in Appendix H):

Coanwencux> Prograr Name: EBEENDR.POR

c

Cmmnmwd Thig program will carry ont o Runge-Kutta integration on the

stress-satrain ajuations of the uMA hysterxetic aodel.

Note that inelactic belhiavior is gupressed beyond EPSLNO,

Yhe physical grwalry is *cat of a rectangular beaw under bending.
Plane sactions are araukwa assumed to remain plane.

%8 bagin by specifying a maximum oeak strain at the surface.

A linear strein distribution is azzrumed to exist about the

neutral axis. The height coordinate {(i.e. y) is divided intc fine
increments and the stress is computed for each of these increwents.
Bagsed ou the nonlinear uniaxial ztcess distributicn, the torque

is computed for each time inotant. The resulting curves for torcue and
bending angle wili be stored in cita files and then will be

uszed to calculate the loes fac’or (cdamping) for that particular

peak strain. The peak strain is then incremented and the process

ie repeated until the final peak strain is used. The results for

loss factor vs. strain arxe theu stornd in an ASCII data file tec be
used in plotting with GRAPHER; ASCIY datr is arranged in column pairs.

ANONANAQNANNNaNANNNNNANNCAGANNNNANNNANANAGANNARNANNANAANANARNANAQAANCAND

AOMZNCLATURE ¢
REAL CONSTARTS:

A Material constant controlling shape ©i hysteresisz
ALFA =Ry/(E~Fy) where By is %tue inelastic modulus

AMP amplitude of strair irput

B Youug's modulus

EPSINO Strain beyond which juelaatic growth is supressed
EPSPKl Minimum peak strain

EPSPR2 Maximum peak strain

FREQ Prequency of cyclic atrain iapul

PT Material congtant cortrolling size of hysteresis
HEIGHT Height {cor thicknessz) of besm

LEN Lerngth of beam

N Cverstress power (conti'ols sharpuess of trrasition to inel.;
VNEH Poisson's ratio

WIDTH Widtk (or depth) of Leam

by Stress where daupirg mechanisms cre activated

Yy Height coordinate of bsam cross-section.

INTEGER CORSTARTS:

NCYCLE 20. of sycles of ascillation
HPPCYC Ho. of poials per cycle to be usel in incegration
RINC Ho. of increments for the range of peak strain

CHARACTER STRINGS:

FILENAME 3%ring for filename ascignment to 2 FORTRAN nnlit numbuer

SALF string for matoriai constant ALFA

SA string for material constant A

SE string fcr Young's moduiuc B

£50 string for limiting etrain ZPSLRO

S¥P string for psak surface st ain applied to baam
3P7 string £or material constant PT

SHEI giring 2oxr bezx hslght

SLER string for beem length

SN atring for overstress power N

SWID string for bsax width

sY string fcor stress where demping mechanisms &ctivate: Y

TITLE descriptive title for run

VARIABIE ARRAYS:

ANGLE (X) hng_.e of bending curvature {index X represents tian2)
ENRGAB(I) Energy absorbed in ane cycle (I represents Dosition)
BERRGST{I) Energy absorbed in one cycle (I renreegent. pomition:

EPSION(X,K) Axial strain (index I rep. pos in cross--.ection,
index X rep. tine)

ETA{I) Lose factor (X represents position)
PBARST{I) Peak strain (index I represente pozitinn)
DREOST(I) Peak equivalent strain (index I represente pczition)

8TPECS(I,K) Axiel stresz {index I rep. pos in crocz-sevtion,
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TORQUE(K)

Z(K)

index K rep. time) .
End torque acting on beam cross-section (K rep. tiwe)
Axial stress passed from INTPUN (index K rep. time)

SUBROUTINES:

DERIV
INTFUN

Contains the differential eqs. (invoked by INTFUN)
Integration routine (4th order forward Runge-Kutta)

MAXIM Determines the min. & max. values of an array
STRLERN ~ounts the number of characters in a2 string

FONCTIOR SUBPROGRAMS:
ERP(X) Error function of X
PACT(K) K factorial
SGN(V) Signun function of V
TRIT{X) Unit step function of X

e Xe e ReReRe Re ke KeKe Nt e ReNe Ko Ne RN o)

IMPLT~T. REAL*8 (A-H,0-%)

INTEGER NEQ

REAL*8 DERIV,PLOAT,T,TEND,Z(20),N,LEN

DIMENSION EPSLONK(101,1001),
STRESS(101,1001), TORQUE (1001),ANGLE(1001),
YY(101),ETA{200),PEAKST(200),ENGA(200) ,ENGS(200)

CHARACTER*20 PILENAME

CHARACTER*70 TITLE

CHARACTER*70 SY,SE,SN,SALP,SEO, SA,.°T, SLEN, SHEI, SWID, SEP?

CHARACTER* (*) SAR1,SARP,SAR.,SAR3,SAP4,SARS,SARG, SAR7, SARS, SARY,

> SA10

PARAMETER (SAR1='e0=')

PARAMETER (SARP='eP=')

PARAMETER (SAR2='Y="')

PARAMETER (SAR3='E=')

PARAMETER !SAR4='n=")

PARAMETER (SARS='alfa=')

PARAMETER (SAR6='a=')

PARAMETER (SAR7='f£T=')

PARAMETER (SARS='Length=")

PARAMETER (SAR9='Height="')

PARAHETER (SA10='Width=')

COMMON/BLOK1/AMP, OMEGA, Y, B, ALFA N, EPSLNO, A, T, RATIO

>
>

o
NEQ = 1
[

Cm=m==> Interactive input of filenamee for the material data input file

c and for output files.
(of
WRITE(*,*) ‘Enter the name of your input data file.'
IPL=9
1 READ(*,2)FPILENAME
2 PORMAT(A)
WRITE (*,3)FPILENAME
3 PORMAT(' ',3X,A20)
IP(IPL.EQ.9)THEN
OPEN( IFL, FILS=FILENAME, STATUS="UNRKNOWN')
ELSE
OPEN({IPL,PILE=FILENAME, STATUS="'UNKNOWN')
ENDIP
IF (IPL.EQ.9) THEN
WRITE(*,*) 'Enter naxe of file for Loss FPact. vs. Peak Strairn'’
IFL=10
GO TO 1
ENDIP
IF (IFL.EQ.1u) THEN
WRITE(*. *) 'Enter name for the summary file'
IFL=11
GO TO 1
ENDIF
IP (IFL.EQ.1l1l) THEN
WRITE(*,*)'Pilename for ENGABS vs. ENGSTO at each peak strain’
IFL=~12
GO TO 1
ENDIP
REWIND 09
REWIND 10
REWIND 11
REWIRD 12
C
C=m===> Read input quantities from input file.
C
READ(9,5)TITLE
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READ(9, " (A} ')SY
REAL(9, ' (&) ' )SE
READ(9, ' (A} ')SN
READ(9, ' (A) ' )SALP
READ(9, '(A) ' )SLEN
READ(9, ' (A) ' )SWID
READ(9, ' (A} ' )SHAI
S5 FORMAT(A)
READ(9,*)E, VNEW
READ(9,%)%
READ(9, *JALPA
READ{9,*)N
READ(9,*}LEN
READ(9, * }WIDTH, KEIGHT
C
Cmum==> Interactive input of other material parzmetars, strain amplitude,
(o and nuxber of cycles of loading to be used in oalculations.
C
WRITEZ(*,*)' Enter EPSLNN’
READ(S, *)B2SLNO
WRITE(*,*)}’ EPSLNO=',EPSLNO
WRITE(*,*)' Enter character string for EPSLNO'
READ(S, ‘' {A}')SEO
WRITE(*,'(1X,''SEO=""',R)')SEO
WRITE(*,*)' Enter A AKD PT'
READ(S,*)A,PT
WRITE(*,*)’ a=',2,' FT=',PT
WRITE(*,*)' Enter character string for a‘'
READ(S, ' (A)')SA
WRITE(*,'(1X,''SA="'',A)'}SA
WRITE(*,*)' Enter character string for fT'
READ(S, ' (A) *)SPT
WRITE(*, " '(1X,''SPT='"',A)"')SPT
WRITE(*,*)' Enter Hu. of points on linear strain profile’
READ(5, *)HGRIDP
WRITE(*,*)' NGRIDP=',NGRIDP
WRITE(*,*)' Enter FRZQ, EPSPKl1 and BPSPX2 (#in, Max Peak Straird;’
READ(S5, *)FREQ, EPSPK]1,EPSPK2
WRITE(*,*)' PREQ=',PREQ,' ZPSPKl=',EPS5SPK1,' EPSPK2=',EPSPX2
WRITE(*,*)' Enter character string for EPSPX2'
READ(S, ‘ (A) ' )SEP
WRITE{*, (1X, 'SEP='‘',A)')SEF
WRITE(*,*)' Enter Number of Cycles and Number of Points per Cycle’
READ(S, * )NCYCLE , HPPCYC
WRITE(*,*)' HCYCLE=' ,KCYCLE,' NPPCYC«',NPPCYC
WRITE(*,*)' BEnter NINC (No. of oncrements betwesn peak strains)’
RBAD(S,*)NINC
WRITE(*,*}' NINC=',KNINC
C
C=====> Determine length of various character strings for later uce.
c
STRLEN(SEO, IBSEC, IESEO)
STRLEN(SEP, IBSEP, IESEP)
STRLEN (SY, IBSY, IESY)
STRIEN(SE, IBSE, TESE)
STRLEN (SN, IBSN, IESN)
STRLEN (SALF,IBSALF, IESALP)
STRLEN(SA,IBSA,IESA)
STRLEN(SFT, IBSFT, IESPT)
STRLEN(SLEN, IBSLEN, IESLEN)
STRLEN(SHEI,IBSHEX, IESHEX)
STRLEN(SWID, IBSWID, IESWID)
STRLEN(SAR1,IBSAR1, TESARY)
STRLEN/!SARP, IBSARP, IESARP)
STRLEN (SAR2, IBSAR2, TESAR?)
STRLEN( SAR3, TBSAR3, TESAR3)
STRLEN(SAR4, IBSAR4, TESAR4 )
STRLEN( SARS, IBSARS5, IESARS)
STRIEN(SAR6, IBSAR6, TESARG)
STRLEN(SAR7,IBSAR7, IESAR7)
STRLEN( SARS, IBSARS, IESARS)
STRLEN (SAR9, IBSARY, IESAR9 )
STRLEN (SA10, IBSA10, IESA10)

EEEEECEEERERERERRRRRES

[o]

ISUM1 = JESAR1l + IESEO + 2 + IESARP + IESEP

ISUM2 = IESARZ + IBSY + 2 +IESAR3 + IESE

ISUM3 = IESAR4 + IESN + 2 + IESARS + IESALP

ISiM4 = IESAR6 + IESA + 2 + IBSAR7 + IBSFT

ISUMS5 = IESARS+IESLEN+2+IESAR9+IESHEI+2+IESA104IBSWID
[of

Ce====> Calculate the quantity Pi=3,14159267..., and other parameters
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PI=DACOS(~1.0D00)

OMEGA = 2.*PI*FREQ

PRINT *,' PI=',PI,’ OMEGA=',OMEGA
RSTEPS = NCYCLE*NPPCYC
NSTPP1 = HSTEPS+.

PRINT +*,' NSTEPS=',NSTEPS
PERIOD =« 1./FREQ

DELY = HEIGHT/NGRIDP

DELT = PERIOD/NPPCYC

DELEPS = {EPSPX2-EPCPK1)/NINC
ISTART = NPPCYC/4. + 1

IEND = ISTART + KPRCYC-1

Cc
C===xu> Set ugp radial grid.
(o]
DO 7, I=1,NHGRIDP
7  YY(I) = -(HBIGHT/2.) ¢ DELY*(Z.*I - 1.)/2.
c
C==m=w> Set up the loop for carrying out integration for each step in peak
(o strain and position in the cross-ssction.
C
DO 7777 J=l,HINC+1
c
Cm=mm=n> Reinitialize T and Z(1). Clear the arrays used in the integration loop.
C
T = 0.
Z2(1) = 0.
PO 9 K=1,KHSTPP1
DO 8 I=], NGRIDP
STRESS(I,K) = O.
8 EPSLON(I,K) = O.
9 CONTINUE
C
Cow=m=x> Update the peak surface strain.
C

AMP = EPSPK1+DELEPS*(J~1)
PEAKST(J) =~ AMP

[
C====x> Carry out the integration at each point in one half of the beam

c cross-section for the current surface strain (only one-half of the
c cross-section need be considered because of symmetry about the
[o] neutral axis).
C
DO 11 I=1,WNGRIDP/2
T = Q.
Z(1) = 0.
EPSLON(I,1) = O.
STRESS(I,1) = 0.
RATIO = YY(I)/(HMEIGHT/2.)
DO i0 K ~ 1,NSTEPS
CALL INTFUN(Z,T,DELT,NEQ)
BPSLON(I,K+1) = -AMP * DSIN(OMEGA*T) * RATIG
STRESS{I,X+1) = Z{1)
1a CONTINUE
11 CONTINUE
(o4

C=====> Using symmetry, determine stresses and strains for the other
(o} half of the cross-section
[od
DO 13 I=NGRID?/2+1,HGRIDP
DO 12 K=1,NSTPP1
EPSLON(I,K) = -EPSLON(NGRIDP-I+1,K)
12 STRESS(X,K) = ~STRESS{NGRIDP-I+1,K)
13 CONTINUE
c
C===xm> Compute the acting end torgue and angle of bear curvature.
(o4
DO 15 K=1,HSTPP1
15  TORQUE(K)=0.0
C
DO 25 X=i,NSTPP1
DO 20 I=1,NGRIDP
20 TORQUE (K)=TORQUE(X) + (-YY¥(T))*STRESS(I,K)*DELY
TORQUZ (K) = WIDTH*TORQUE(K)
ANGLE(EK) = 2.*LEN*EPSLON(1,K)/HEIGHT
25 CONTINUE
[
C=====> Cokpute damping for the current peak surface strain.
c
CALL MAXIM(TORQUE,NSTPP1l, TORMIN, TORMAX)
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o

c

C
C
[
[o]

CALL MAXIM(ANGLE,NSTPP1,ANGMIN,ANGMAX)
ENGABS = 0,

DO SO I=ISTART,IEND

ERGABS = ENGABS + .5 * (TORQUE(I+1) + TORQUE(I)) *
> (ANGLR(J+1) - ANGLE(I)}
CONTINUE

ENGSTO = .5*TORMAX*ANGMAX

ENGA(J) = ENGABS

ENGS(J) = ENGSTO

ETA(J) = ENGABS/(2.*PI*ENGSTO)
WRITE(*®,'(3X,I3,2(3X,210.4))')J,PEARST{J),BTA(J)

7777 CORTINUE

1000
1001
1200
1201
1500
1501

CALL MAXTH(ETA,RINC,ETAMIN,ETAMAX)

> Write results to output data file (unit 10) and to
output text file (unit 11).

WRITE(10,'(1X,2(B16.8,'','"))"') (PEARST(J) BTA(J),J=1,NIKC)
WRITE(12, ' (1X,2(216.8, ", "' ")) ") (ENGS(J),ENGA(J), =1, HIKC)
WRITE(11,'(5X,'‘1 **,I2,°'" *'',A,A2X,A,A,''"'*)")

> ISUM1,SAR1, SEO(IBSEO:IZ5E0), SARP, SEP{IBSEP1 IESZP)
wmwuL(u'u'unf'“unauhmf"“r)

ISUM2,SAR2,SY(IBSY:IESY),SAR3,SE(IBSE:IESE)
WMWUL(afﬂ'nn"“uAanAnp““r)
ISUM3,SAR4, SN(IBSN:IESN), SARS, SALT { IBSALF: IESALF)
WRITB(II, (5X," '3 **,12,°" "', AA,2X,A,4, " ') ")
ISUMd, SARG, SA(1BSA: IESA) , SAR7 , SPT( IBSPT: IESPT)
wunuL(n'w'unf'“nhananzxAL““uw
> ISUMS, SARS, SLEN (IBSLEN: IESLEN),

> SARY, SHEI (IBSHEI: IESHEI),

> SA10, SWID(IBSWIDsIESWID)

WRITE(11,'(SX,''S 26 "Peak Loss Factor='',E9.3,'°'"'‘')')ETAMAX
PRINT *,' MAX LOSS PACTOR=',ETAMAX

PORMAT(A70)

PORMAT(2A60)

PORMAT(' *,3X,'1',5%,17)

PORMAT(® *,3X,'2',5X,I7)

PORMAT(' ',5X,E10.4,5X,E10.4)

FORMAT(' *,5X,B10.4,5X,E10.4,5X,E10.4)
STOP

END

SUBROUTINE DERIV(Z,T,ZDOT)

IMPLICIT REAL*8 (A-H,0-Z)

INTEGER NEQ

REAL*8 OMEGA,T,%(20),ZDOT(20),NN

COMMON/BLOK1/AMP, OMEGA, Y, B, ALPA, NN, EPSLNO, A. P'T, RATIO

EPSLON = ~AMP ¢ DSIN(OMEGA*T) * RATIO
EPDOT = -AMP * OMEGA * DCOS(CMEGA*T) * RATIO
DLTAEF = DABS(EPSLON) - EPSLNO
IP(DLTAEP.LT.0.0)THEN
BETA=(E*ALFA)*( EPSLON - Z(1)/E +

> PT*ERP(A*EPSION) *UNIT(~-EPSLON*EPDOT) )

IF(NN.EQ.1.0)THEN
ZDOT(1) = E*{ EPDOT -

> DABS(EPDOT)*(Z(1)~3ETA)/Y )

ELSE
ZDOT(1) = E®( EPDOT - DABS(EPDOT)*

> (DABS(Z({1)~BETA) /Y )%+ (NN-1)*
>

(Z2(1)-BETA)/Y )
ENDIP
ELSE
ZDOT(1) = E*EPDOT
ERDIP
RETURN
ERD

Cmmcmunnmu>BENDR . POR

EXAMPLE OF AN INPUT FILE:

SMA Hysteretic Model with Blasticity Outside e0
855 psi
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28.5x%106 psi
3

.818

20 in

1 in

.5 in
28.5R06 0.3
855.

0.818

3

20.

1. .5

5

EXAMPLE OF A BATCH FILE TO RUN BENDR ON THE CODE 281 MICROVAX:

set def [.hysteresis)

r bendr
bendr.inp
bendr.dat
bendr.txt
benrg.dat
l.e-4
1.0e~4§
80000. 4.e-5
80000
4.0e~-5

20

1.0 .25e-4
1.75e~¢

2 100

20

1.75e-4
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APPENDIX G

FORTRAN MAIN PRCGRAM (all subroutines and function subprograms that are not

specifically related to the calculations being made here are given in Appendix H):

Comsumnu=u> Program Name: TORRANGE.FPOR

(o]

C==n==a> This program will carry out a Runge-~Xutta integration on the

stress-strain equations of the SMA hysteretic model.

Hote that inelastic behavior is supressed beyond GRHMMAO.

The physical gecietry is that of a solid cylinder under torsion.
Plane gtress conditions are assumed (pure shear to be specific).

We begin by specifying a minimum peak strain at the surface.

A linear strain distribution is assumed to exist in the circular
crosg section. The radial coordinate is divided into fine
increments and the stress is computed for each of thege increments.
2ased on the shear stress distribution, the resulting torque is
ccaputed for =ach time instant. The resulting curves for torque and
overall sample twist will be stored in data files and then will be
used to calculate the losz factor (damping) for that particular
peak strain. The peak strain is then incremented and the process

is repeated until the final peak strain is used. The results for
loss factor vs. strain are then stored in an output file to be used
in ploxting with GRAPHER; ASCIX data is arranged in column pairs,

ANNNONN0NNNaaA0ONaNNANaNNRONNAO0NNAaNNAANAaNNANNANANA0ANNNNANNcNNRRNNANN

ROMENCLATURE:

REAY, CONSTANTS:
A Haterial constant controlling shape of hysteresis
ALFA =Ey/(E-By) where By is the axial inelastic modulus
AMP Amplitude of strain input

DIA biameter of shaft
B Young's modulus
G shear modulug {=E/[2(1+VNEW)]}

GAMMAO sStrain beyond which inelastic growth is supressed
GAMPK1 Mirnimum peak strain

GAMPX2 Maximum peak strain

FREQ Frequency of cyclic strain input

PT Material conztant con“rolling size of hysteresis
LEN Length of Shaft
¥ Overstress power (controls shurpness of transitics to inel.)

RADIUS Radius of shaft
VNEW Poisaon’s ratio
Y Axial stress where damping mechanisms are activatad
¥s Shear stress where aanping wmechanisws are activated

IRTEGER CONSTANTS:
NCYCLE HNo. ¢f cycles of czciliation
RFPCYC No. of points per cycle to be used in integraticn
RIXC Ro. cf increments for th<e range of peak strain

CHARACTER STRINCS:
FILENAME siring Zor filerams assignwent ©¢ & PORTRAN vunit number

SALP etring for material constant LLFA

S& string for .aaterial constant 2

spia string for gesmetric constant DIA

SG striug for Yeing's roduluz G

8GO strin; for limiting atrain GAMMAD

SPT striny for material constant PT

SLEN string for geometTic coanstart LEN

SN atring 2o, overstress power K

SYS 2tring for shear stress where dampiny wechanisms activate

TITLE degcriptive title 2or ruvn

YVARIMBLE ARRAYS:

ARGLE (X) Angie of twist of szhaft {iades. X rapresents time)
ENRGAB(I) Erergy absorbed in on» cycie (I repreaeris positicn)
2PRGST{I) Enerqy absorded 3o one cycle (I reprcernis pesition)
GAMIU I,X) Shear strain (inder I rep. position, X rep. time)
BTA Losg factor (I represeuts position)

PBAKIZ{T) Feak strain (index I represents position)

PKEQST( 1) Peck equiv-alen?, strain (index I respresenrts position)
TAU(L,K) Shaar stresa (index Y yep. positicr, X rep. time)
TORQUE (K} Resultant tcrque acting on shaft

Z{K) Shear etrass passed fros IRTIUH (ladex X 1ep. tima)
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[o

C SUBROUTINES:

[ DERIV Contains the differential eqgs. (invoked by INRTFUN)
c INTPUN Integration routine (4th order forward Runge-Kutta)
c MAXTIM Determines the min. & max. values of an array

c STRLEN Counts the number of characters in a string

[}

C FUNCTION SUBPROGRAMS:

c ERP(X; Error function of X

c FPACT(K) K factorial

c SGN(V) Signum function of V

c UNIT(X) Unit step function of X

o4

C

c

IMPLICIT REAL*8 (A-H,O0-Z)

INTEGER NEQ

REAL*8 DERIV,FLOAT,T,TEND,TOL,%(20),N,LEN

DIMENSION GAMMA(101,1001),TAU(101,1001),

> TORQUE(1001) , TRIST(1001),

> R(101),ETA(200),PEAKST{200),ENGA(200) ,ENGS(200)
CHARACTER*20 PILENAME

CHARACTER*70 TITLE,SYS,SG,SN,SALF,SG0,SA,SPT, SLEN, SDIA, SGP
CHARACTER* (*) SAR1,SAR2,SAR3,SAR4,SARS, SAR6, SAR7, SARS, SARY, SARP
PARAMETER (SAR1='gO='})

PARAMETER (SARP='gP=')

PARAMETER (SAR2='Ys=')

PARAMETER (SAR3='Gs=')

PARAMETER (SAR4='n=')

PARAMETER (SARS='a=')

PARAMETER (SARG='a=')

PARAMETER (SAR7='fT=')

PARAMETER (SARS='Length=')

PARAMETER (SAR9='Diameter=')
COMMON/BLOK1/AMP,OMEGA, YS, E,G,ALFA, N, GAMMAO, A, PT,RAD3, RATIO

c
HEQ = 1
[
C=manw> Interactve input of filenamas for the material data input file
o] and for output files.
C
WRITE(*,*) 'Enter the name of your input data file.'
IFPL~9
1 REED(*,2)PILENAME
2 PORMAT(RA)
WRITE(*,3)PILENAME
3 PCRMAT(' °,3X,A20)
IF(TIPL.EQ.9)THEN
OPEN (IFL, PILE=PILENAME, STATUS='UNKNOWN '}
ELSE
OPEN(IFL, FILE=PILENAME, STATUS="UNKNOWN ")
ENDIP
IF (IFL.FQ.9) THEN
WRITE(”,*) 'Bnrer nawme of file for Loss Pact. vs. Peak Strain’
IP?=10
GO Tu 1
THDIP
iP (IPL.EQ.10) THEN
WRITE(*,*) 'Eater name for the summary file'
ZFL=11
GO TO 1
ENDIP
P (IPL.EG.11) THEW
WRITE(*,*) 'Pilaname for ENGABS and ERGSTO at each peak strain.’
IPL~=12
GO TO 1
ENOIZ
REWX#HD 09
REWIND 10
REWIID 21
REWIND 12
Cc

Cxzwsw> Reald input quantities from input file.

READ{9,5)TITLE
READ{9-'(A)')51S
REBaD({9, ' (A)°)S6
READ{%, ‘() ')SN
READ{9, ' (A} ' )SALP
RIAD(S, ' (A\ ' ;SLEN
READ(9, (A} 1SDIA

58 DTRC-SME-91/34




5 PORMAT(A)
READ(9,*)E, VKEW
READ(9,*)Y
READ(9,*)ALPA
READ(9,*)N
READ(9,* ) LEN
READ(9,*)DIA

C
C===nw> Interactive input of other material parameters, strain amplitude,
[ and number of cycles of loading to be used in calculations.
(o4
. WRITE(*,*)' Enter GAMMAO'
READ(5, * )GAMMAO
WRITE(*,*)' GAMMAO=',GAMMAO
WRITE(*,*)' Enter character string for GAMMAO'
READ(S, ' (A) ')SGO
WRITE(*, '(1X,''SG0="",A)"')8GC
WRITE(*,*)' Enter A AND PT'
READ(S,*)A,FT
WRITE(*,*)' A=',A,' PT=',PT
WRITE(*,*)' Enter character string for a’
READ(S, ' (A)')SA
WRITE(*, '(1X,'’SA=""',A)"')SA
WRITE(*,*)' Bnter character string for £T'
READ(S, ' (A)')SPT
WRITZ(*, '(1X,''SPT='',A)"')SFT
WRITE(*,*)' Enter No. of points on linear strain profile’
READ(5, * }NGRIDP
WRITE(*,*)' NGRIDP=', KNGRIDP
WRITE(*,*)' Bnter FREQ, GAMPK1 and GAMPK2 (Min, Max Peak Strains)’
READ (5, * ) FREQ, GAMPK1, GAMPE2
WRITE(*,*)' PREQ=',KFREQ,' GAMPKl=',6GAMPK1l,' GAMPK2=',6 GAMPK2
WRITE(*,*)' Enter character string for GAMMAP'
READ(5, ' () ' )SGP
WRITE(*, ' (1X.''SGP="'"',A)"')SGP
WRITE(*,*)*' Enter Number of Cycles and Number of Points per Cycle'’
READ(5, * )RCYCLE, NPPCYC
WRITE(*,*)' NCYCLE=',KNCYCLE,' NPPCYC=', KNPPCYC
WRITE(*,*)' Enter NINC (No. of increments between peak strains)'
READ(5, *)NINC
WRITE(*,*)' NINC=',NINC
GAMMEP = GAMPK2
Cc
C=====> Determine length of various character strings for later use.
C
STRLEN(SGO, IBSG0,IESGO)
STRLEN (SGP, IBSGP, IESGP)
STRLEN(SYS,IBSYS, IESYS)
STRLEN ( SG, IBSG, TESG)
STRLEN(SN,IBSN, IESN)
STRLEN (SALF, IBSALF, IESALF)
STRLEK (SA, IBSA, IESA)
STRLEN(SFT, IBSFT, IESFPT)
STRLEN{SLEN, IBSLEN, IESLEN)
STRLEN(SDIA,IBSDIA,IESDIA)
STRLEN(SAR1, IBSAR], IESAR])
STRLEN( SARP, IBSARP, IESARP)
STRLEN (SAR2, IBSAR2, IESAR2)
STRLEN(SAR3, IBSAR3, IBSAR3)
STRLEN(SAR4, IBSAR4,IESAR4)
STRLEN ( SAR5, IBSARS, IESARS)
STRLEN (SAR6, IBSARG , IESARG )
STRLEN(SAR7, IBSAR7, IESAR7)
STRLEN(SARS8, IBSARS, IESARS)
STRLEN (SAR9, IBSAR9, TESAR9)

CEERERERERRRRERERRRE

ISUM1
ISUM2
ISUM3
ISuM4
ISUMS

IESAR]1 + IESGO +2 + IESARP 4 IESGP
IESAR2 + IESYS '2 + IESAR3 + IESG
IESARE + IESN + 2 + IESARS + IESALP
+ +
+

IESARG IESA + 2 IESAR7 + IESPT
IEBSARS IESLEN + 2 + IESARY9 + IESDIA
(o]
C=====> Calculate the quantity Pi=3,14159267..., and other parameters
(o]
PY = DACOS(-1.0D00)
RAD3 = 3,*+,5

OMEGA = 2,.*PI*FREQ
FRINT *,‘' PI=',PI,' OMEGA=',6OMEGA
NSTEPS = NCYCLE*NPPCYC
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NSTPP1 = NSTEPS+1

PRINT *,' NSTEPS=',NSTEPS
PERIOD = 1./FREQ

RADIUS = DIA/2.

DELR = (DIA/2.)/NGRIDP

DELT = PERIOD/NPPCYC

PRINT *, 'DELR=',DELR,' DELT=',DELT
DELGAM = (GAMPK2-GAMPK1)/NINC
PRINT *,'DELGAM=‘,DELGAM
ISTART = NPPCYC/4. + 1

IEND = ISTART + NPPCYC-1

C
Cmm=wx> Set up radial grid.
Cc
DO 7, I=1,NGRIDP-1
7  R(I)=DBLR*I
R(NGRIDP)=RADIUS
C
Cm=m==> Set up the loop for carrying out integration for each step in
c peak strain,
o]
DO 7777 J=1,NINC+1
c

Ca==u=> Clear the arrays for shear stress and strainm.
[o
DO 9 K=1,NSTPPl
DO 8 I=1,NGRIDP
TAU(I,K) = 0.
8 GAMMA(I,K) = 0.
9 CONTINUE

Cmm=u=n=> Update the peak strain and reinitialize time and 2(1).
(o]

T = 0.

Z(1) = 0.

AMP = GAMPK1+DELGAM* (J-1)

PERKST(J) = AMP

c
C====w> Carry out the integration at each point along the radial
[o] coordinate of the circular cross-section, for the current
c surface strain.
C
DO 11 I=1,NGRIDP
T = 0,
Z(1) = O.
GAMMA(I,1) = O.
TAU{I,1) = O.
RATIO = R(I)/RADIUS
DO 10 X = 1,NSTEPS
CALL INTPUN(Z,T,DELT,NEQ)
TAU(I, K+1) = 2(1)
GAMMA(I,K+1) = AMP * DSIN(OMEBGA*T) * RATIO
10 CONTINUE
11 CONTINUE
(o]

C=x==x> Compute the acting torgue and angle of twist of the shaft.
(o4
DO 15 K=1,NSTPP1
15 TORQUE(K)=0.0

c
DO 25 K=1,NSTPP1
DO 20 I=1, NGRIDP-1
20 TORQUE (K)=TORQUE (K) + R(I)*TAU(I,X)*2.*PI*R(I)*DELR
TORQUE (K)=TORQUE(K) + (R(NGRIDP)-DELR/4.)*TAU(NGRIDP,K)*
2.*PI*(R{NGRIDP)-DELR/4.)*DELR/2.
TWIST(X) = GAMMA(NGRIDP,K)*LEN/RADIUS
25 CORTIRUD
Cc
C=m===> Compute damping for the current peak strain.
Cc
[o
CALI, MAXIM(TORQUE,NSTPP1, TORMIN, TORMAX)
CALL MAXIM(TWIST,NSTPP1l, TWIMIN, TWIMAX)
ENGABS = 0.
(&4
DO 50 I=ISTART,IEND
ERGABS = ENGABS + .5 * (TORQUE(I+l) + TORQUE(I)) *
> (TWIST(I+1l) - TWIST(I))
50 CONTINUE
[

ENGSTC = .S5*TORMAX*TWIMAX
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ENGA(J) = ENGABS

ENGS(J) = ENGSTO

BTA(J) = ENGABS/(2.*PI*ENGSTO)

WRITE(®, *(3X,I3,2(3X,210.4))"')J,PEAKST(J) ,ETA(J)
7777 CONTINUE

CALL MAXIM(ETA,NINC,ETAMIN,ETAMAX)

> Write results to output data file (unit 10, 12, 13, and 14) and to
output text file (unit 11).

Qaocon

WRITE(10,'(1X,2(E16.8,'', ' ))")(PEAKST(J),ETA(J),J=1,NINC)
. WRITE(12,'(1X,2(E16.8,'',°'"')) "'} (2HGS(J),BNGA(J),Ju=1,NIKNC)
WRITE(11, ' (5X,''0 **,22,%* "' ',A,A,2%,A,A, """ '} ")
> ISUM1, SAR1,SGO (IBSGO:IESGO), SARP, SGP { IBSGP: TESGP)
WRITE (11, (5K, 1 7, 02, " " A AL2K, A8, 50 0) )
> ISUM2, SAR2, SYS (IBSYS: IESYS), SAR3, SG(IBSG: IESG)
WRITE(II,'(SX,"Z I'IIZ,“ .",A,A,ZX,A,A,.'..')I)
> ISUM3, SAR4, SN(IBSN:TESN), SARS, SALF ( IBSALF : IESALF)
WRITB(ll,'(SX,"3 11'12’41 -”'A,AIZX,A,A,I'..')I)
> ISUMA, SAR6, SA{IBSA:IESA), SAR7, SPT(IBSPT: IESPT)
wnxrz(11, (SX)''4 *',12,'° "', A,A,2X,AA, """ "))

ISUMS, SARS, SLEN ( IBSLEN: TESLEN) , SAR9, SDIA(IBSDIA: IESDIA)
wnxrz(11, (SX,''S 26 "g='',E9.4,2X, ' 'SDC='',E9.4," "' ') )ETA,SDC
WRITE(11,'(5X,''6 32 "Pezk Loss Pactor='‘,E9.3,°'"''})')ETAMAX
PRINT *,' MAX LOSS PACTOR=', ETAMAX

1000 PORMAT(A70)

1001 PORMAT(2R60)

1200 PORMAT(' ',3X,'l',5X,I7)

1201 PORMAT{' ',3X%,'2',5X,I7)

1500 FORMAT(' ',5X,B10.4,5X,E10.4}

1501 PORMAT(' ',5X,E10.4,5%,£10.4,5%,B10.4)
STOP
END

SUBROUTINE DERIV(Z,T,ZDOT;

IMPLICIT REAL*8 (A-H,0-%)

INTEGER NEQ

REAL*8 OMEGA,T,Z(20),ZDOT(20),NN
COMMON/BLOK1/AMP ,OMEGA, YS,E,G,ALPA, KN, GAMMAOC, A, PT, RAD3, RATIO

c
GAMMA = AMP + DSIN(OMEGA*T) * RATIO
GAMDOT = AMP * OMEGA * DCOS(OMEGA*T) * RATIO
DLTAGA = DABS(GAMMA) - GAMMAO
IF(DLTAGA.LT.0.0)THEN
BETA=(1./3.)%(E*ALPA)*( GAMMA - £(1)}/G +
> RAD3*PT*ERP (A*GAMMA/RAD3 ) *UNIT{ -GAMMA*GAMDOT) )
IP(NN.EQ.1.0)THEN
ZDOT(1) = G*( “AMDOT - DABS(GAMDOT)*(Z(1)~-BETA)/YS )
ELSE
ZDOT(1) = G*( GAMDOT - DABS(GAMDOT)*
> (DABS(Z(1)-BETA)/YS)**(HNN-1)*
> {Z(1)-BETA)/YS )
ENDIP
BLSE
2DOT(1) = G*GAMDOT
ENDIP
RETURN
END
c

Cxmuxaxom=>TORRANGE . FOR

EXAMPLE OF AN INPUT FILE:

SMA Hysteretic Shear Model with Elasticity Outside g0
494 psi

10.56x106 psi

3

.818

2 in

.5 in

28.5E06 0.35
855.

0.818

3

2.

.5
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EXAMPLE OF A BATCH FILE TO RUN TGRRANGE ON THE CODE 281 MICROVAX:

set def [.hysteresis])
r torrange
torrarge.inp
torrange.dat
torrange.txt
torrenrg.dat

1.56e~4

1.56e-4

£0000. 4.2-5

80000

4.0e-5

410

1.0 .05e-4 2.57e-4
2.57e-4

2 100

20
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APPENDIX H

GENERAL SUBROUTINES AND FUNCTION SUBPROGRAMS USED IN THE FORTRAN

PROGRAMS IN APPENDICIES B-G:

title: strlen.for

author: shw
Turbulence Research Laboreztory
SUNY @ Buffalo
trlscottiubvas

function:
find the first and last character in a string

inputs:
string - character string

outputs:
ib - first non-blank character
ie ~ last non-blank character
subroutines requireds

modifications:

0000000000000 OQ0

subroutine strlen(string, ib, ie)
character string#(v)
j = len(string)
do 10 i=j,1,-1
if(string(i:ti) .ne. ' ') goto 20
10 continue
ie = 1
ib = 1
return
20 ie = i
do 30 i=1,j3
if(string(i:i) .ne. ° ') goto 40
30 continue
40 ib = i
return
end

SUBROUTINE MAXIM(F,NPOINT,PMIN,PMAX)
IMPLICIT REAL*S (A-H,0-Z)
DIMENSION P(1001)
FPMAX = 0.
PMIR = 0.
DO 10 I=1,NPOINT-1
IF(F(I+1).GT.FMAX)THEN
PMAX = F(I+1)
ENDIP
IF(F(I+1).LT.PMIN)THEN
PMIN = P(I+1)
ENDIP
10 CONTINUE
RETURN
END

REAL*8 PUNCTION UNIT(X)
REAL*8 X
IP(X.LT.0.0)THER
UNIT=0.0
ELSE
UNIT=1.0
ENDIF
RETURN
END
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REAL*8 FUHCTION ERP(X)
IMPLICIT REAL*8 (A-H,0-Z)
INTEGER K

PI = DACOS({-1.0D0C)

IF(X.GT.3.0D00) THEN
ERF = 1,0D00
GO TO 500
ELSEIF(X.LT.~3.0D00)THEH
BERP = ~1.0D00
GO TO 500
ELSE
TOL = .0001
X=0
KMAX = 35
SERIES = 1.
THULT = 2.%X/(PI**.5)
100 K=K+ 2
IP(X.GT.KMAX) THEN
PRIRT *,' K = XMAX  ERP(',X,')=',ERF
GO TO 500
ENDIP
PRIOR = SERIES
ODDTRM = (~1)*{ DABS(X)**(2.*(K-1)) )}/
> ( FACT(X-1)*(1+2*(X-1)) )
EVHTRM = ( DABS(X)**(2.*K) }/( FACT(K)*(1+2*K) )
SERIES = SERIES + ODDTRM + EVNTRM
ERF1 = TMULT * PRIOR
BRP2 = TMULT * SERIES
DELTA = ERF2 - ERF1
ADELTA = ABS(DELTA)
IP{ADELTA.LE.TOL) THEN
ERP = ERF2
GO TO 500
BLSE
GO TO 100
ENDIP
ERDIF
500 RETURN
END

REAL*8 FUNCTION PACT(K)
IMPLICIT REAL*8 (A-H,0-Z)
INTEGER I,K
IF(K.EQ.0.0R.K.EQ.1)THEN
FACT = 1.0
GO TO 20
ELSE
FACT = 1.0
DO 10,I=2,K
PACT = FACT*I
10 CONTINUE
ENDIF
20 RETURN
END

REAL®*8 PUNCTION SGN(V)

REAL*8 V

IP(V.LT.0.0)THEN
SGN=-1.0

ELSE IF(V.BQ.0.0)THEN
SGN=0.0

ELSE
SGNw1.0

BHDIP

RETURN

ERD

SUBROUTYNE INTFUN(X,TIME,T,)
IMPLICIT REAKL*8 (A-H,0-Z)

X - STATE VECTOR

TIME - RUNNING TIME

T - TIME IRTERVAL

¥ - DIMENSION OF THZ STATE VECTOR

naao

64 DTRC-SME-91/34




a

101
22
15

100
11

400
18

5C0
19

21

32

DIMENSION X(20),D(20},A(20,5),XB(20)
DATA XUSE/1/

INITIALIZE

XINC= 0

HHIN= 0

EMAX= 1.R-05
ZNIN= 1.2-07
TIN= TIME
TWOUT= TIN + T

TIN - PEGIMNNING OF INTERVAL
TOUT - END OF THE INTERVAL

IP(XUSKE .NE. O}H=T
IP(KUSE LEQ. O)H=ESAVE
KH= O

XBsE= 0

INTEGRATION ALGORITHM BETWERN 22 ANRD 19

DO 101 I}, ¥
XB(Ij= X(I)

Fai
CATZ, DERIV(X,TIME,D)
GO TO {100,200,300,400,500),X

DO 11 I=},R
A(I,K)~ D(I)*H/3.
XtI}= XB(I)+A(Z,1)

TIME= TIN + H/3.C0
X X1
80 TO 15

po 12 Ir1,HB
ALI,R)= D{I)*H/3.00
%(1)=XE(I)+0.50%( A(I,1)}+A(I,2) )

R=K+1
GG C 15

pC 17 I=1,R
A{I,Ky= D(I)*H/3.G0
R(I)= XB(I}+{3.9 * A(I,1)49.0*A(I,3))/8.00

TIME= TIK + 0.50*H
K= K+1
GO TO 15

DO i3 I=1,M
A(I.X}= D(X})*H/3.00
X{I)=XB(I)+{3.°A(I,1}-9."A(I,2)+12.7A(,4))/2.0

TIME= TIN + H
K=K+1
GO TO 15

DO 19 I=1,N
A(I,K)= D(I)*¥#/3.00
X(T)=XB(I)4.5%(R{X,2)44.*A{I, 4}+2({I,5))

COMPUTE THE TRUNCATION ERRCR
INTEGRATION ALGORITHM BETWEEN 22 AND 19

ERROR= 0.00

DO 21 I=1,N
TE=A(X,1)-{9.*A(X,3)-B.*A{¥,4)+A{I,5)}/2.00
BRROR= DMAX1(ERROR,DABS(1Z))

IP( ZRROR .GE. EMAX GO TO 33

bo 32 I=1,R
SB{I)= X(I}

L= TIME
IP{ZTINE .BQ. TOUT)GO 70 39
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31

33

34

35

39

A0

TREM= TOUT - TIME
IP(TREM .GT. H)GO TO 31
HSAVE= H

KH= 1

H= TREM

GO TO 22

IP(TREM .LT. (2.00*H))GO TO 22
IF(ERROR .GT. EMIN)GO TO 22

KINRCs= KINC+1

IP(KINC .LT. 3)GO TO 22
H= 2.CO*H

KINC= 0

GO TO 22

H= H/2.00
IP(H .LT. HMIN)GO TO 35
TIME= TIN

DO 34 I~1,N
X{I)= XB(I)

GO TO 22
WRITE(*,*)'H IS LT HMIN.
GO TO 40

IP(XH .EQ. 1)RETURN
HSAVE~ H

RETURN

STOP

END

TERMIRATED. '
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